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들어가기앞서서

• 본기술보고서는 “Compute Can’t Handle the Truth: Why Communication Tax
Prioritizes Memory and Interconnects in Modern AI Infrastructure1”의 한글직역과일부
변환툴을사용하여작성된문서로, 표현상의검수는완료하였으나정확한문맥과내용의이해를
위해서는원본영문기술보고서를참조하기바랍니다.

• 본기술보고서는파네시아데모내용과 XLink에 대한부분을제외하고모두 2024년 8월
반도체공학회하계학술대회의파네시아키노트연설의내용을기반으로작성되었습니다.

• 본기술보고서는학술연구결과나출판물을위한것이아니라, 다양한독자들의이해를돕기위한
목적으로작성된안내자료입니다. 따라서학술적활용보다는대규모언어모델그리고 AI 인프라,
연결 반도체에대해쉽게이해하고접근하고자하는독자들에게권장합니다.

• 본기술보고서에서소개된다수의내용은특허로보호받고있습니다.

1Link: https://panmnesia.com/technology/pub/compute-cant-handle-the-truth-why-communication-tax-prioritizes-
memory-and-interconnects-in-modern-ai-infrastructure/
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1. 기술보고서개요

인공지능(AI, Artificial Intelligence), 특히기계학습(ML, Machine Learning)은 지난수십년간점진적인기술
발전과 다양한 알고리즘적 전환을 반복하며 지속적인 성장을 거듭해 왔다 [1–4]. 초기 AI모델과 서비스는 주로
연산 성능 향상에 기반하여 발전하였으나, 최근의 주요 진전은 대규모 데이터의 확보 가능성과 메모리 관리 기술,
인터커넥트아키텍처의진보에크게의존하고있다. 이러한기술들은오늘날의AI 시스템이인간수준또는그이상의
인지 능력을 모사할 수 있도록 발전하는 것에 큰 기여를 하 있으며, 이로 인해 현대 AI 기술은 이미지 인식, 자연어
이해, 대화형상호작용, 창의적콘텐츠생성등의다양한작업에서탁월한성능을발휘하고있다 [5–9].
대부분의AI 기법은기본적으로비정형데이터를벡터와행렬등구조화된수치표현으로변환하여고차원공간에서
복잡한 패턴을 학습하는 방식을 사용한다 [10–14]. 이 과정에서 AI 모델은 고차원 손실함수(Loss Function)의
특성을 효과적으로 활용하기 위해 경사 하강법(Gradient Descent)과 같은 알고리즘적 최적화 기법을 활용하여
수십억에서 수조 개의 파라미터들을 반복적으로 조정하며 학습하는 것이 일반적이다 [15–19]. 이러한 AI 모델의
표현력은 학습에 사용되는 고차원 데이터를 얼마나 정밀하게 내재화할 수 있는가에 달려 있으며, 이에 따라 학습
정확도와 일반화 성능이 결정된다고 볼 수 있다. 따라서, 다양한 영역에서 더 높은 정확도와 성능을 위해 사용하는
데이터의복잡성과그크기가증가하였으며, 해당 메모리와연산자원의요구량또한기하급수적으로증가하게되어
기존중앙처리장치(CPU, Central Processing Unit) 중심의 인프라를벗어나게되었다.

오랜기간잠재되어있던 AI 연구의성과가최근챗GPT와 같은실생활응용으로급격히
전환된것은아날로그에서디지털로, 필름에서디지털카메라로, 내연기관에서
전기차로의전환과비견되는새로운기술패러다임의도래를의미한다.
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이러한 모델 변화에 따라 높아진 연산 능력을 수용하기 위해, 최신 데이터센터(Data Centers)와 고성능컴퓨팅
(HPC, High-Performance Computing) 환경에서는 CPU 대신 AI 반도체라고 불리는 하드웨어 가속기(Accel-
erator)를 포함하여 그래픽 프로세싱 유닛(GPU, Graphics Processing Unit)들이 중요 하드웨어 자원으로 자리
잡았다2 [20–35]. 특히, GPU는수천개의병렬연산유닛과고대역폭메모리(HBM, High-Bandwidth Memory)
를 통합하여 대규모 AI 연산에 적합하도록 설계되고 진화해 왔다 [22, 36–39]. 다만, 이러한 진화에도 불구하고
GPU 또는 가속기가보유할수있는메모리의용량으로는급격한 AI 기법의 변화와대규모모델들을수용할수없는
상태에도달했다. 예를들어라마 3(Llama 3) 405B 모델 [7, 8]과 같이십만개이상의토큰을입력으로받는경우,
임베딩, 활성화값, 옵티마이저상태등을저장하기위해 100테라바이트(TB, Terabyte)가 넘는대용량의메모리가
필요하다 [24, 25, 28, 40–46]. 이는 엔비디아(NVIDIA)의 블랙웰(Blackwell)과 같은 최신 GPU [20, 21]가
제공하는 100에서 200 기가바이트(GB, Gigabyte) 수준의 온보드(On-Board) 메모리를 훨씬 상회하는 수치다.
따라서최근 AI 시스템에서는수천수만대의GPU를함께배치하여모델이나데이터를나누어병렬실행하는구조의
사용이필수가되었고, 이러한분산처리및동기화요구에따라발생하는GPU간통신오버헤드가전체학습시간의
35%–70%에달할정도로전체AI 인프라의병목에중심이되었다 [32, 47–51]. 다양한학문분야에서연구가수행
되었으나, 수십년간우리생활에직접활용되지못하던 AI 연구의결과가오픈AI(OpenAI)의 챗GPT(ChatGPT)와
같은실제응용분야로전환이이루어지고, 많은사람들에게직접영향을주기시작한것이불과최근 2년안에일어난
사실이라는것을생각해보면, 대규모AI 워크로드에서발생하는빈번한GPU간통신, 이로인한방대한데이터교환,
그리고높은메모리요구사항이얼마나현대 AI 인프라시스템에부담이될지쉽게유추해볼수있다.

대규모 AI 워크로드에서발생하는빈번한 GPU 간 통신, 이에 따른방대한데이터교환,
그리고높은메모리요구사항등은 AI 인프라와데이터센터의주요과제가더이상

단순한연산량자체에국한되지않음을보여준다.

다시 말해, 이와 같은 현실은 더 이상 연산량 자체가 AI 인프라에서 중요 지표가 될 수 없으며, 특정한 응용 처리
가속 및 하드웨어 가속기 구축만이 우리가 준비하고 풀어야 하는 과제의 핵심이 될 수 없음을 알려준다. 앞에서
언급되었듯이 대규모 분산, 병렬 처리에서 오히려 핵심 문제는 GPU나 가속기 간의 방대한 데이터 이동, 메모리
사용, 통신 동기화와 관련된 시스템 레벨 성능 저하와 전력 소모라고 볼 수 있다. 기존의 GPU 중심 구조는 메모리
컨트롤러가 프로세서에 밀착 통합되어 있어 외부 확장이 어려우며, PCIe나 NVMe 기반 스토리지를 통한 메모리
접근 시 수백 나노초(ns) 에서 수십 마이크로초 (µs) 수준의 지연이 불가피하게 발생하여 GPU 활용도가 현저히
저하된다 [26, 27, 52, 53]. 이러한 문제를 해결하기 위해, “컴퓨트 익스프레스 링크(CXL, Compute Express
Link [54–56])” 기술을 기반으로 하는 연결 반도체들이 차세대 AI 인프라의 핵심으로 부상하고 있다. CXL 인터커
넥트(Interconnect) 기술은메모리컨트롤러를연산유닛으로부터완벽히분리하고, 여러컴퓨팅노드가공유할수

2본 기술 보고서에서 하드웨어 가속기는 일반적인 CPU를 제외한 신경망 프로세서 유닛(NPU, Neural Processing Unit), AI 프로세싱
유닛(APU, AI Processing Unit), 도메인 특화가속기(DSA, Domain Specific Accelerator) 그리고 GPU 등을모두포함한다.
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있는일관성있는메모리풀(Coherent Memory Pool)을 구성할수있도록함으로써동적인메모리관리및대규모
확장을 가능하게 한다 [26, 57–61]. 이러한 CXL 기술을 구현할 수 있는 연결 반도체의 설계자산(IP, Intellectual
Property)과 다양한 장치를 CXL로 연결하게 하는 스위치반도체를통해전통적인메모리확장의 제약을극복하고
데이터이동을제거하여, GPU 간 자원활용효율을획기적으로향상할수있다.
CXL과 같은 신흥 인터커넥트 솔루션을 활용하여 현재 AI 인프라의 구조를 새롭게 설계하려면, AI 모델의 이론적
구조에서부터 데이터센터의 하드웨어 구성까지의 전체 시스템을 폭넓고 쉽게 이해하는 것이 필수적일 것이다. 본
기술 보고서에서는 먼저 현대 AI 모델이 데이터를 어떻게 표현하고 처리하는지에 대한 원리를 쉽게 정리하고, 이후
데이터 관리, 메모리 구조 및 통신 최적화 기술의 관점에서 주된 확장성 한계를 분석한다. 이 과정에서 실제로 최신
NVIDIA GPU 아키텍처들로 구현된 대규모 AI 인프라 사례를 통해, 대규모 AI 워크로드 처리에 대해 GPU 기술이
갖는구조적한계를구체적이고명확하게살펴본다.
그후, 본 기술 보고서에서는 점점 복잡해지고 다양한 특성을 가지는 AI 워크로드를 더 잘 처리하기 위해, CXL을
기반으로 하는 모듈형(Modular) 및 동적 컴포저블(Composable) 데이터센터 구조를 제안한다. 이 구조는 연산,
메모리, 가속기와같은자원들을논리적또는물리적으로분리(Disaggregate)하여, 워크로드의요구에따라자원을
유연하게 나누고 늘릴 수 있도록 만들어졌다. CXL 인터커넥트 기술은 모든 반도체 사이의 캐시 일관성(Cache
Coherence)을유지해, CPU의개입없이도외부메모리장치와데이터를공유할수있게한다. 이를통해, 일반적인
AI 학습과추론뿐아니라, 검색기반생성(RAG, Retrieval-Augmented Generation [41, 42, 62–64])이나키-값
캐싱(KV Caching, Key-Value Caching [29, 31, 65–68])과 같은 다양한 추가 작업까지도 새로운 패러다임의
병렬 ·분산 처리를적용하여획기적인성능실현과비용절감을이룰수있다.

본기술보고서에서는 AI 인프라혁신을목표로, 수십만대의 GPU 및 가속기들이마치
하나의거대한연산장치처럼동작할수있게하는다양한연결반도체기술과이를위한

대규모데이터센터인터커넥트솔루션을소개한다.

이외에도, 본기술보고서는수십만대의가속기가하나의망으로연결될수있도록하기위해, 인터커넥트기술들을
하나로통합하는기술을제안한다. 이를위해, 고처리량·저지연가속기전용인터커넥트기술인울트라엑셀러레이터
링크(UALink [69, 70]), 엔브이링크(NVLink [71–73]), 엔브이링크 퓨전(NVLink Fusion [74, 75])을 통합한
엑스링크(XLink) 아키텍처를 제안한다. UALink는 개방형 이더넷(Ethernet)에 기반하며, NVLink는 엔비디아
플랫폼전용으로설계된링크이다. 두 기술모두단일홉(Single Hop) 연결 방식을사용하여랙내의소규모가속기
간 고성능 분산 처리에 적합하지만, 대규모 AI 시스템의 확장성 측면에서는 한계가 있다. 이를 보완하기 위해 본
보고서는 CXL과 XLink를 융합한 “하이브리드 링크 아키텍처(CXL-over-XLink)”를 제안하여, 서로 다른 종류의
가속기 클러스터들을 통합한 슈퍼클러스터(Supercluster)를 구성하고, 메모리 공유와 노드 간 통신의 확장성을
향상한다. 이를 통해 불필요한 원격 직접 메모리 접근(RDMA, Remote Direct Memory Access) 기반 데이터
이동 [76–79]을 감소시키고, 현대적 AI 인프라에적합한확장가능한통신구조를제공한다.

본한글보고서는다양한독자들의이해를돕기위한목적으로직 ·번역된것으로, 정확한내용은원문기술보고서를참고하시기바랍니다.
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마지막으로, 본 보고서는제안된하이브리드링크기반슈퍼클러스터아키텍처에대해로컬가속기메모리와외부
메모리풀을계층적으로결합하여다양한지연시간과용량요구사항에대응하는메모리풀링구조를제시한다. 이와
더불어 HBM, 실리콘 포토닉스, 저비용의 계층형 CXL 메모리 전략 등을 활용하여 시스템의 물리적 확장성과 비용
효율을동시에확보할수있는방안을검토하고, HPC환경의과학계산및메시지전달인터페이스(MPI, Message-
Passing Interface) 기반 워크로드 [80–84]에서도 이러한 기술이 실질적으로 확장될 수 있음을 분석하여, CXL
기반 AI 인프라의활용성과실용성을입증한다.
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2. RNN부터트랜스포머까지, 시퀀스모델링의패
러다임전환

본 절에서는 최근 AI 기술이 연구 중심 영역에서 벗어나, 일상생활과 산업 현장에 실질적으로 사용될 수 있게 된
배경에 대해서 알아보고 AI를 최대한 쉽게 설명하고자 한다. 이를 위해, 현대의 AI 모델이 복잡한 데이터를 어떻게
표현하고처리하는지를살펴보고, AI의 최근급격한변화와성장을가능하게한하드웨어기술발전과정을정리하여
소개할것이다.
이러한 AI 소개와설명의중심에는시퀀스모델링(Sequence Modeling)의 데이터처리방식과발전과정이자리
잡고있다. 본기술보고서는초기의 “시퀀스-투-시퀀스(Seq2Seq, Sequence-to-Sequence)” 프레임워크 [85–
87]에서출발하여, 어텐션(Attention) 메커니즘과트랜스포머(Transformers [6, 88, 89]) 구조의등장및발전을
거쳐, 궁극적으로 오늘날의 “대규모 언어모델(LLM, Large Language Models [46, 90–94])”에 이르는 흐름을
다룰 것이다. 또한, 시계열 데이터(Time-Series Data)의 특성과 중요성을 설명하고, 이를 처리하는 Seq2Seq
프레임워크의 핵심 개념을 제시한다. 또한, “순환 신경망(RNN, Recurrent Neural Network [95–97])” 기반
초기 모델의 장점과 한계점을 분석한 뒤, 어텐션 메커니즘이 이를 어떻게 보완했는지 다룰 것이다. 이어 트랜스포머
아키텍처가 병렬 연산과 하드웨어 가속 기술의 발전을 활용하여 기존 모델의 확장성(Scalability) 문제를 극복한
방식을 소개하고, 이러한 확장성 개선이 실제 응용 분야에서 트랜스포머 구조가 빠르게 확산된 배경임을 설명한다.
마지막으로 트랜스포머에서 LLM으로 발전하는 과정과, 이 과정에서 요구되는 대규모 하드웨어 인프라 및 시스템
확장성 측면의 기술적 시사점을 알아보도록 한다. 이를 통해 본 절은 현대 AI 시스템의 복잡한 인프라 설계와 운영
환경을이해하는데필요한핵심개념을제공할것이다.
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|그림 1| 디시전바운더리설정. |그림 2| 손실함수의최소화.

2.1. 시계열데이터와시퀀스-투-시퀀스(Seq2Seq)프레임워크의이해
최근 AI 기술은 다양한실제 문제에대해우리가도달할수있는높은수준의정확도를달성하며, 다양한 영역에서
폭넓은 주목과 혁신을 이끌어내고 있다. 시퀀스 모델을 설명하기에 앞서, 오랫동안 사용되어 왔던 AI 모델 학습과
추론에대하여그원리를간단히알아보고이러한모델에서시계열데이터를어떻게처리할수있었는지를설명한다.

AI학습과추론방법에대한간단한소개. 현실의복잡한문제를해결하기위해,실제데이터는AI가처리할수있도록
일반적으로숫자, 벡터, 행렬과같은특정차원(Dimension)의좌표계로사상(Mapping)할수있는수학적표현으로
변환된다. 그림 1에서볼수있듯이 AI는현실데이터가사상된좌표계에서특정패턴을가진그룹들의경계를나누는
기준, 즉 디시전 바운더리(Decision Boundary)를 설정하여 추후 입력되는 문제가 어떤 그룹에 들어가는 것인지
확인하고 문제를 해결하는 것이 핵심이다. 이를 위해 AI 모델이 데이터 간 그룹을 설정하는 좌표계를 옮겨 다니며
범주를 탐색함으로써 서로 간 그룹을 구분하는 범위를 좀 더 명확히 하는 디시전 바운더리를 찾는 과정이 바로 모델
학습(Training)이라고볼수있다. 이에반해, 모델추론(Inference)은 간단히이야기하여특정입력에대한질의가
있을때해당입력이좌표계어디에있고이디시전바운더리에의해서어디에포함되는지에대해판단해주는것으로,
이 추론이실제결과와유사할수록정확도(Accuracy)가 높다고할수있다.

AI는 현실데이터가사상된좌표계에서특정패턴을가진그룹들의경계를나누는
기준을설정(학습)하여 추후입력되는문제가어떤그룹에들어가는것인지확인(추론)

하고 문제를해결하는것이핵심이다.

여기서디시전바운더리를결정한다는것(학습)은 실질적으로는손실함수(Loss Function)라는 지표를이용하여
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모델의예측결과가실제정답과얼마나다른지를측정하는것을의미한다. 디시전바운더리는이손실값을최소화하
도록 설정되며, 학습을 통해 도출된 최적의 디시전 바운더리는 높은 추론 정확도를 제공하여 다양한 실제 문제들을
효과적으로해결할수있다. 그러나현실에서접하는문제들은단순한저차원공간에서다양한데이터그룹들을나눌
수 있는 좌표상 경계를 명확하게 설정하기 어려운 경우가 훨씬 많다. 예를 들어 그림 1a처럼 2차원 좌표평면계에서
두개의다른패턴을가지는그룹을디시전바운더리를선형함수하나로쉽게판단할수있는경우도있으나, 그림 1b
처럼 해당 방식으로 해결되지 않는 경우가 대부분이다. 그림 1c(2차원)에서의 한계점을 극복하기 위해 그림 1d(3
차원)과 그림 1e(4차원)에 나타낸 것처럼 AI 모델은 파라미터 공간의 차원을 증가시켜 더 복잡한 형태로 데이터를
표현하고, 이렇게표현된높은차원의파라미터공간에서데이터를더효과적으로분류할수있는디시전바운더리를
찾아낸다. 예시에서는단순한차원만을이야기하였지만, 현대대규모AI 모델이가지는파라미터공간의크기(차원)는
일반적으로 수십억(Billions)에서 수조(Trillions) 수준이다 [7, 28, 98–101]. 이러한 대규모 파라미터공간크기는
이제까지 풀지 못했던 문제를 해결하는 데 큰 역할을 하고 있지만, 막대한 양의 메모리와 데이터 통신을 필수적으로
필요로하여 AI 인프라구축에서새로운도전과제로부각하고있다.

현실에서접하는문제들은단순한저차원공간에서다양한데이터그룹들을나눌수
있는좌표상경계를명확하게설정하기어려운경우가훨씬많기때문에현대대규모 AI

모델은수십억에서수조에이르는차원의파라미터를사용한다.

참고로, 앞에서 언급된 손실함수의 대표적 예로는 평균제곱오차 손실(Mean Squared Error Loss [102–105])
이나 교차 엔트로피 손실(Cross-Entropy Loss [106–110])등이 있으며, 그림 2에서처럼 AI 모델 학습의 목표는
기본적으로 이러한 손실함수가 최솟값을 갖도록 하는 모델 파라미터를 설정하는 것에 가깝다. 다만 파라미터의
개수가 매우 많으므로, 최적의 데이터 표현에 대한 차원이 결정된다고 하더라도 AI 모델은 해석적인(Analytic)
방법으로 손실함수의 최솟값을 찾기 어려운 경우가 다반사이다. 따라서 AI 학습에서는 근사적 알고리즘인 경사
하강법(Gradient Descent) [15, 102, 111, 112]이 널리 사용된다. 경사 하강법은 손실을 최소화하기 위해 임의의
파라미터 초기값에서 시작하여, 기울기 정보를 이용하여 함수의 값이 줄어드는 방향으로 이동하는 것을 반복하는
형태로구현된다. 손실함수가최솟값을갖는지점에서는기울기가 0이 되므로이조건에서알고리즘을종료한다.
경사 하강법은복잡한손실함수에서도효과적으로최솟값을찾을수있다는장점이있으나, 명확한 한계점도존재
한다. 반복 탐색을 통해 최솟값에 접근하므로, 한 번에 이동하는 거리(Step Size)가 너무 크면 최소 지점을 지나칠
수 있고, 반대로 너무 작으면 탐색 시간이 지나치게 길어질 수 있다. 또한, 임의의 지점에서 시작하여 손실을 줄이
는 방향으로 이동하므로 전역 최솟값(Global Minimum)이 아닌 지역 최솟값(Local Minimum)에 갇힐 가능성도
있다. 이러한 한계를 극복하기 위해 확률적(Stochastic) 경사 하강법 [5, 102, 113–118])이나 Adam(Adaptive
Moment Estimation [119–123])과 같이 Step Size나 이동 방향을 동적으로 조정하는 다양한 최적화 기법들이
제안되었으나, 결국에는 손실함수가 최소값을 갖도록 모델 파라미터를 설정하는 AI 학습 목표를 동일하게 가지고
있다.

본한글보고서는다양한독자들의이해를돕기위한목적으로직 ·번역된것으로, 정확한내용은원문기술보고서를참고하시기바랍니다.

본 문서에포함된콘텐츠는다수의특허및저작권법을통해보호받고있습니다.

9



파네시아기술리포트

(a)시계열데이터시퀀스. (b) Seq2Seq 모델의핵심개념.

|그림 3| 시퀀스-투-시퀀스(Seq2Seq) 프레임워크.

시퀀스 모델링의 기본 구성요소. 현실 세계의 문제들은 이미지, 오디오, 비디오, 텍스트 등 여러 형태의 데이터
모달리티(Modality)를 포함하지만, 공통적으로 시간에 따른 “순차적 특성”을 지닌다. 이 시계열적 속성은 다양한
데이터 유형을 일반화된 “시계열 데이터”로 표현하고 분석할 수 있는 기반을 제공하며, 이를 쉽게 이해할 수 있도록
그림 3a에 시각적으로 표현하였다. 그림에서 보여지듯, 다양한 형태의 데이터와 문제는 시계열 데이터로 표현될 수
있다. 따라서 시계열 데이터에 내재된 시간적 종속성과 구조를 효과적으로 포착하는 것은 AI 시스템이 깊이 있는
분석을 통해 정교한 의사결정을 수행하고, 다양한 응용 분야에서 높은 예측 정확도를 달성하는 데 핵심적인 역할을
한다고볼수있다. 하지만앞서언급된것처럼 AI 시스템에입력되는이러한데이터들은구조화된수치형태로먼저
변환되어야 한다. 수치 변환을 위해 제안된 시퀀스 모델 중 가장 영향력이 있는 모델이 Seq2Seq이다. 2014년에
처음 소개된 이 모델 [85]은 비교적 오래된 접근 방식이지만, 그 핵심 구조는 오늘날 다양한 시퀀스 모델링 기법의
근간으로 다른 모델들을 이해하는데 매우 중요하기 때문에 본 절에서는 이를 간단히 정리하여 설명하고자 한다.
관련하여 Seq2Seq를 이해하는데핵심이되는인코딩(Encoding), 순서화(Ordering), 디코딩(Decoding)이라는
세가지개념을그림 3b를 통해구조적으로도식화하고아래설명하였다.

시계열데이터의시간적특성과구조를잘포착하는것이 AI 시스템의정교한
의사결정과높은예측정확도달성에핵심이다. 수치화를위한시퀀스모델의구조는

기본적으로순서화, 인코딩, 디코딩이라는개념들을반드시포함한다.

1. 인코딩: 인코더의주요작업은입력시퀀스를압축하여간결한수치표현인잠재벡터(Latent Vector)로변환하는
것이다. 이벡터는입력데이터에존재하는핵심적인맥락정보와시간적관계를효과적으로내포하며,이후시퀀스

본한글보고서는다양한독자들의이해를돕기위한목적으로직 ·번역된것으로, 정확한내용은원문기술보고서를참고하시기바랍니다.

본 문서에포함된콘텐츠는다수의특허및저작권법을통해보호받고있습니다.

10



파네시아기술리포트

(a)인코딩과정. (b)디코딩과정. (c)기울기소실문제.

|그림 4| RNN 기반 Seq2Seq 아키텍처와그한계점.

분석 및예측의기초로사용된다.

2. 순서화: 순차적처리과정은모델내부의각단계가이전요소의맥락정보를충분히반영할수있도록한다. 이러한
순서 정보는 출력 결과의 일관성과 정확성을 보장하며, 일반적으로 시계열 예측의 신뢰도를 높이는 데 중요한
역할을한다.

3. 디코딩: 디코더는 인코더가 생성한 내부 표현을 기반으로 사람이 이해할 수 있는 출력 시퀀스를 재구성한다. 이
과정에서는잠재벡터가지닌문맥정보를활용하여번역, 요약, 예측과같은실제결과물을생성한다.

이러한특성을반영한Seq2Seq모델의인코더-디코더프레임워크는길이와복잡성이다양한시퀀스를효율적으로
처리할 수 있도록 구조화 되어 있다. Seq2Seq의 인코더는 전체 입력 시퀀스를 간결한 내부 표현으로 압축하면서
문맥적(Contextual) 정보및시간적(Temporal) 정보를효과적으로보존할수있도록한다. 디코더는이렇게생성된
내부 표현을 바탕으로 정확하고 일관된 출력 시퀀스를 생성하여, 복잡한 데이터 패턴과 인간이 이해할 수 있는 출력
사이의격차를줄이고, 효과적으로연결하는역할을수행한다. 이와 같은구조화된방법론덕분에 Seq2Seq 모델은
언어번역, 음성 인식등다양한작업에서효과적인도구로자리잡았다.
그림 4에나타난것과같이, 초기 Seq2Seq 모델은순차적데이터를자연스럽게처리할수있는 RNN을기반으로
구현되었다. RNN 기반의 Seq2Seq 아키텍처에서인코더의주된역할은입력시퀀스를읽고이해하는것으로입력
데이터를 순차적으로 처리하며(그림 4a), 이전 데이터의 핵심 문맥 정보를 요약한 ‘은닉 상태(Hidden State)’라는
내부메모리를유지하도록만들어졌다. 인코더는단계마다현재데이터와이전은닉상태를비선형함수(Non-linear
Function, 예: 하이퍼볼릭 탄젠트(tanh), 정류 선형 유닛(ReLU, Rectified Linear Unit [124, 125]))를 포함한
수학적 연산을 통해 결합하여 새로운 은닉 상태를 생성함으로써 순차적으로 데이터를 만드는 것이 중요한 작업 중
하나이다. 이러한비선형함수는데이터내의복잡하고비선형적인관계를효과적으로포착할수있도록돕는역할을
수행하는데, 이와 같은 비선형 변환이 없다면 모델은 복잡한 패턴과 시퀀스 내 시간적 종속성(Dependency)을
표현하는 데 심각한 제한이 생긴다 [126–128]. 지금까지 설명한 방식으로 각 단계에서 현재 입력 데이터와 이전
시점의 은닉 상태를 비선형적으로 결합하여 순서대로 처리하는 업데이트 과정은, RNN 기반의 Seq2Seq 모델의
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인코더가 입력 시퀀스의 시간적 종속성과 문맥 정보를 보존하면서 전체 시퀀스를 점진적으로 응축된(Concise)
형태의의미있는내부표현으로요약할수있게도와준다.
그림 4b에 나타난 것처럼, 인코더가 시퀀스 압축을 완료하면 RNN 기반의 Seq2Seq 아키텍처에서 디코더는
이 요약된 표현을 바탕으로 문맥을 이해할 수 있고 이를 통해 구조화된 출력 시퀀스를 재구성한다. 해당 디코더는
압축된은닉상태뿐만아니라이전에생성한출력을입력으로활용하여출력데이터를순차적으로생성하는데, 재구성
과정에서 디코더는 완전 연결(FC, Fully Connected) 레이어(Layer)를 사용하도록 설계되어있다 [88, 129]. FC
레이어는 추상적이며 압축된 내부 표현을 실제 이해 가능한 현실 세계의 출력 형태로 변환하는 데 특화된 신경망
계층이다. 각 FC 계층은 내부 정보를 더욱 명료하고 구체적인 형태로 변형하여, 디코더가 정확하고 일관된 번역,
요약, 예측과같은시퀀스를생성할수있도록돕는다.

초기시퀀스모델링은초반부데이터에서나온정보가점차없어지는기울기소실문제,
이른바망각현상과, 순차적인연산구조로인한종속성문제로병렬화되지못해

확장성과계산효율성이제한되는문제를가지고있다.

RNN기반의 Seq2Seq 모델은이러한초기성공에도불구하고그림 4c에서설명하는바와같이훈련중시퀀스의
초반부 데이터에서 나온 정보가 점차 소실되는 “기울기 소실 문제(Vanishing Gradient Problem [130, 131])”
로 인해 그 사용이 크게 제약되었다. 기울기 소실 문제로 인해 모델은 긴 범위 데이터 간의 연관성(Long-range
Dependency)을 포착하는 능력이 현저히 저하되는데, 이 문제는 인간이 오래된 기억을 점차 잊어버리는 현상, 즉
망각과유사하다고볼수있다. 이러한기울기소실문제이외에도, RNN은본질적으로순차적인연산구조를가지기
때문에 병렬 연산 기술의 혜택을 받지 못하며, 이에 따라 확장성과 계산 효율성이 제한되는 문제를 가지고 있다.
이러한 RNN 기반의 Seq2Seq 모델 한계점들은 장거리 문맥 정보를 더 잘 보존하고 병렬 연산이 가능한 더 진보된
아키텍처가개발되는계기가되었다.

2.2. 시퀀스모델링의패러다임전환

어텐션메커니즘의도입. 전통적인RNN기반아키텍처는구조적으로기울기소실문제와제한된확장성을내재하고
있다는것을알아보았다. 본절에서는이한계점중망각문제를해결하기위한시퀀스모델링기술의핵심전환점으로
평가받는어텐션(Attention) 메커니즘을구체적으로설명하고자한다 [88, 132, 133].
어텐션메커니즘은모델이출력시퀀스의각요소를생성할때입력시퀀스내에서가장관련성높은부분에동적으로
집중하여, 초기 정보를유지하고기울기값을최대한보존할수있도록하는기술이다. 다시 말해, 기존의 RNN 기반
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(a) RNN에 적용된어텐션메커니즘. (b)임베딩레이어. (c)위치인코딩.

|그림 5| 어텐션기반 RNN 및 트랜스포머아키텍처.

접근법은전체입력시퀀스를하나의고정된크기의은닉상태로압축하여표현하는방식이기때문에훈련중기울기
값들을잃어버리고망각하는형태의문제를만들어냈다. 반면, 어텐션메커니즘은인코더가생성한모든은닉상태에
대한 접근을 유지하고, 현재 디코딩 단계와의 관련성에 따라 각 상태에 가중치를 선택적으로 부여한다. 이 과정에서
앞부분에위치한입력이라도높은관련성을가지면충분한영향력을가질수있기때문에, 시퀀스의길이와관계없이
정보가소실되지않고유지될수있다.
그림 5a는 이러한 어텐션 메커니즘을 좀 더 구체적으로 설명해준다. 먼저, 디코더는 순서상 각 단계에서 자신의
현재 은닉 상태와 모든 인코더 은닉 상태 간의 유사도를 계산하여 어텐션 가중치(Attention Weights)를 생성한다.
이후, 소프트맥스(Softmax) 함수 [134–136] 등을통해이유사도점수를정규화하고디코더는이가중치를이용해
인코더의 은닉 상태들을 가중 합산하여, 현재 단계에서 가장 관련 있는 입력 정보를 담은 컨텍스트 벡터(Context
Vector)를 생성한다. 생성된컨텍스트벡터는이전출력들과함께사용되어다음출력토큰(Token3)을 생성하는데
활용된다. 즉, 컨텍스트 벡터는 중요한 정보를 선택적으로 집중해서 반영할 수 있으므로, 시퀀스가 길어져도 기울기
정보가희석되지않고유지될수있는구조적이점을제공하며, 결과적으로기울기소실(망각현상)에 관련된문제를
완화한다.
우리는이러한어텐션메커니즘도입과관련하여두가지특성을이해하는것이필요하다. 첫째, 어텐션기반모델은
입력 시퀀스의 길이와 관계없이 어떤 위치에 있는 정보라도 효과적으로 유지하고 참조할 수 있다. 이는 앞서 언급한
것처럼 고정 크기의 은닉 상태로 모든 정보를 압축했던 기존 방식의 한계를 극복하며, 필요한 정보를 상황에 따라
동적으로 활용하는 콘텐츠 기반 메모리 구조(Content-Based Memory)를 가능하게 한다 [88, 132, 133, 137].
3토큰은단어, 서브워드, 문자와같은언어데이터의기본구성단위를의미한다.
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둘째, 어텐션 메커니즘은 모델의 해석 가능성(Interpretability)을 크게 향상시킨다. 다시 말해 생성된 어텐션 가중
치는 모델이 입력 시퀀스 중 어느 부분에 집중하여 출력을 생성했는지를 시각적으로 보여줄 수 있으며, 이는 복잡한
모델의의사결정과정을직관적으로이해하는데큰도움이된다 [138–140].

어텐션메커니즘은초기정보를유지하고기울기값을최대한보존할수있도록하는
기술로망각현상을완화시키는핵심이되었으나여전히순차적계산방식으로
병렬처리가불가능하여본질적으로성능이제한되는문제를가지고있다.

이러한개선에도불구하고, 어텐션기반모델은여전히기존 RNN아키텍처의순차적계산방식을계승하기때문에
본질적인 병목(병렬성의 부재)을 해소하지는 못한다. 각 시간 단계는 이전 단계의 계산 결과에 반드시 의존하므로,
현대의 병렬 하드웨어를 충분히 활용하기 어렵다. 이러한 병목은 완전한 어텐션 기반 구조로 설계된 트랜스포머
(Transformer)의 등장을촉진했으며, 결과적으로시퀀스모델링의구조적패러다임을근본적으로변화시켰다.

순환에서병렬로: 트랜스포머(Transformer)의혁신. 시퀀스모델링분야의중대한전환점은 2017년트랜스포머
(Transformer) 아키텍처 [88]의 도입으로시작되었다. 트랜스포머는기존 Seq2Seq 및 RNN 기반모델의순차적
연산구조를벗어나오직어텐션메커니즘만으로완전한병렬처리를실현함으로써, 시퀀스모델의구조적패러다임과
계산효율성을근본적으로변화시켰다.
트랜스포머의핵심연산구조는셀프어텐션(Self-Attention) 기법에있다 [141–145]. 기존의어텐션메커니즘이
주로 인코더와 디코더 간의 관계에 중점을 두었다면, 셀프어텐션은 같은 시퀀스 내부의 토큰 간 관계를 병렬적으로
처리할 수 있도록 설계되었다. 구체적으로 셀프어텐션은 시퀀스 내 모든 토큰 간 상호작용을 동시에 계산할 수 있게
함으로써기존 RNN 기반어텐션이가진순차적계산의한계를극복하고독립적인병렬처리를가능하게한다.
이러한 병렬 처리가 가능한 이유는 셀프어텐션 연산이 각 토큰의 “입력 임베딩(Input Embeddings)”표현에
기반하여 동시에 이루어지기 때문이다. 입력 시퀀스의 각 토큰은 임베딩 레이어를 통해 고차원 벡터로 변환되고,
그림 5b에서 보는 바와 같은 임베딩들이 모델 입력으로 활용된다. 트랜스포머는 RNN 기반 모델과 달리 이 임베딩
표현들을직접병렬로처리하여시퀀스전체를동시에연산할수있다.
각 토큰의임베딩은고유한의미적정보를포함하고있으며, 셀프어텐션메커니즘은개별적임베딩을독립참조함
으로서모든토큰간관계를동시에반영하여처리할수있다. 이로써순차적모델링이필요했던기존 RNN의제약이
사라지고, 모든 토큰 간의 계산을 병렬로 수행할 수 있는 기반이 마련되었다고 볼 수 있다. 무엇보다 트랜스포머의
이러한 동시 처리 방식은 병렬 하드웨어의 성능을 극대화하여 계산 효율성과 확장성을 높일 수 있기 때문에, GPU
사용이 AI 인프라에서대중화되는데중요한역할을하였다 [43, 146, 147].
셀프어텐션의임베딩기반처리방식은기존어텐션기본모델의순차적구조를제거함으로써병렬성을확보할수
있게 되었지만, 이로 인해서 입력 시퀀스의 순서 정보(Ordering)를 명시적으로 유지하지 못하는 문제를 해결해야
했다. 다시말해, RNN은계산과정자체가시간흐름을내재적으로반영하지만, 트랜스포머는병렬연산구조로인해
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시간정보를자동으로보존하지못한다. 이를해결하기위해위치인코딩(Positional Encoding)이도입되었다. 그림
5c에 나와 있듯, 위치 인코딩은 각 토큰의 상대적 또는 절대적 위치 정보를 임베딩 벡터에 추가하여 모델이 토큰의
위치를파악할수있도록해준다.

트랜스포머의동시처리방식은병렬하드웨어의효율성과확장성을높여, AI
인프라에서 GPU의 대중화에기여하였다.

이러한위치인코딩은사실간단한정현함수기반의고정형(Sinusoidal Positional Encoding) 또는학습가능한
임베딩(Learned Positional Embedding)의 형태로 구현될 수 있다 [148–150]. 두 방식 모두, 실제 구현에서는
트랜스포머가다루는임베딩벡터에더해져셀프어텐션연산이전에시퀀스내위치정보를효과적으로반영하면서도
병렬 처리의 효율성을 유지할 수 있도록 돕는다. 따라서, 트랜스포머는 임베딩 기반의 입력 표현과 위치 인코딩을
결합하여병렬연산을유지하면서도긴거리의의존성(Long-Range Dependencies)을효과적으로처리할수있게
되었다. 이러한 구조적 특성 덕분에 트랜스포머는 기존 RNN 기반 모델보다 성능과 확장성 측면에서 완전히 다른
우수성을입증하며, 현재 대부분의대규모언어모델및시퀀스처리분야에서사실상의표준으로자리잡게되었다.

(a)멀티-헤드셀프어텐션메커니즘. (b)피드포워드네트워크(FFN).

|그림 6| 트랜스포머레이어연산: 셀프어텐션과피드포워드네트워크(FFN).
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(a)MoE의 전체구조. (b)MoE의 통신복잡성.

|그림 7| 전문가혼합(MoE) 아키텍처.

셀프어텐션과전문가혼합(Mixture of Experts): 시퀀스이해능력의향상. 본 하위 절에서는 시퀀스 모델 능력
향상의 핵심이 되는 셀프어텐션과 “전문가 혼합(MoE, Mixture of Experts)”에 대해서 좀 더 자세하게 이야기
해보자.
앞서 간단히 설명된 것처럼 셀프어텐션은 트랜스포머 구조의 핵심 요소로, 기존 어텐션 메커니즘과 달리 동일
시퀀스 내부에서 서로 다른 위치에 있는 토큰 간의 관계를 병렬적으로 처리, 계산할 수 있도록 설계되었다. 이를
위해서그림 6a에서나타난바와같이, 셀프어텐션은각토큰의임베딩에서쿼리(Query), 키(Key), 밸류(Value)의
세가지벡터를생성한다. 이벡터들은각각학습가능한선형변환행렬(WQ,WK ,W V )을 통해계산되는데여기서
쿼리는각토큰이원하는정보, 키는각토큰이제공가능한정보, 밸류는실제제공하는정보의내용을나타낸다. 모든
쿼리 벡터는 전체 키 벡터들과 스케일 조정된 내적(Scaled Dot-Product)을 통해 유사도 점수(Attention Score)
를 계산하며, 소프트맥스 함수를 통해 정규화된 어텐션 가중치를 산출한다. 이러한 가중치들을 밸류 벡터에 가중합
형태로 적용하여 각 토큰의 컨텍스트 벡터를 만들어 각 토큰을 시퀀스 내 다른 위치와의 의미적 관련성을 반영하는
표현으로 재구성한다. 이때 모든 토큰의 쿼리, 키, 밸류 벡터는 서로 독립적으로 생성되고, 어텐션 가중치의 계산
또한모든토큰쌍에대하여동시다발적으로수행될수있기때문에, 병렬 연산이가능한 GPU와 같은하드웨어에서
효율적으로구현될수있다.
트랜스포머는 나아가 셀프어텐션을 확장하고 병렬성을 최대화하기 위해 “멀티 헤드 어텐션(Multi-Head Atten-
tion [88, 151, 152])”이나 “쿼리그룹어텐션(Grouped Query Attention” [153–155]) 사용한다. 이는여러개의
셀프어텐션 블록(헤드)을 병렬로 구성하여 각 헤드가 독립적인 Q, K, V 벡터를 생성하고 연산하도록 하도록 하는
구조이다. 각 헤드는별도로학습된파라미터를통해더욱풍부한의미적표현을얻을수있으며, 트랜스포머는멀티
헤드어텐션의병렬구조를통해다양한시멘틱관계및장기의존성을동시에포착할수있다.
셀프어텐션에덧붙여, 그림6b에서볼수있듯이, 트랜스포머는일반적인신경망에서흔히언급되는FC레이어와는
다른특수한구조의 “피드포워드네트워크(FFN, Feed-Forward Network)”를 내부에포함하고있다. 셀프어텐션
이 토큰 간 맥락적 관계를 효과적으로 포착하지만, 개별 토큰의 표현은 추가적인 정제 과정이 필요하다. 이를 위해
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FFN은셀프어텐션메커니즘의보완역할로각토큰임베딩에독립적이고위치별(Position-Wise)로 비선형변환을
수행한다. 구체적으로, FFN은 두 개의 선형 변환과 이 사이에 ReLU나 GELU [124, 156]와 같은 비선형 활성화
함수를결합한구조로구성된다. 첫번째선형변환은입력임베딩을보다높은차원의표현공간으로투영하여,모델이
데이터내의복잡하고비선형적인패턴을포착할수있도록한다. 이후 두번째선형레이어는이렇게정제된표현을
원래의 차원으로 다시 투영한다. 결과적으로 FFN은 셀프어텐션이 생성한 맥락 인식 임베딩을 한층 더 강화하는
역할을 하게 된다. 또한 각 토큰 위치에서 FFN 레이어가 독립적으로 동작하기 때문에, 트랜스포머 아키텍처의
본질적인병렬처리장점을그대로유지할수있다.
반면, 셀프어텐션으로생성된토큰단위의표현을FFN이개선하더라도,다양하고복잡한데이터를더욱효과적으로
처리하려면 모델 용량 및 연산 효율성을 증가시켜야 한다. 따라서 트랜스포머는 진보된 아키텍처인 MoE 구조를
도입하였다 [40, 157–159]. 그림 7a는 MoE의 전반적인 구조를 나타낸 것으로, 이는 앞서 언급한 모델의 용량과
계산 효율성 향상을 목표로 설계되었다. MoE는 네트워크를 다수의 전문가(Expert) 서브 네트워크로 분할하고 각
입력토큰마다특정전문가만활성화하여연산을수행한다. 이러한MoE구조에서각전문가는특정데이터패턴이나
특징에 특화되어 있으며, 게이팅 네트워크(Gating Network)가 입력 토큰에 따라 전문가를 선택하고 라우팅하는
방식으로동작하게된다. 쉬운예로, 100개의전문가중입력토큰마다상위2개의전문가만활성화하는방식을들수
있다. 이는전체모델의파라미터수를크게증가시키면서도실제추론시일부파라미터만활성화하여계산효율성을
유지할수있게하여모델의성능을최대화할수있다 [40, 158, 160–162].

전문가혼합구조의효과적구현을위해 GPU 간 직접연결이나고대역폭스위치기반의
고속인터커넥트구조가필수적이다.

이렇게 MoE 구조는 수용할 수 있는 계산 효율성을 높일 수 있지만, 아쉽게도 GPU 간 통신 복잡성은 증가시킨다.
그림 7b는 이러한 통신 복잡성을 도식화하고 있다. 그림에서 볼 수 있듯이, 다수의 GPU에 분산된 전문가들의 연산
결과를 취합(Aggregation)하여 후속 계층으로 전달해야 하므로, 전문가 간의 빈번한 통신이 요구된다. 특히, 다음
셀프어텐션계층은MoE 출력이완전히통합된이후에야연산을시작할수있어계산병렬성이매우제한되는구조적
의존성을발생시킨다. 따라서 MoE 구조를효과적으로구현하기위해서는, GPU 간 직접연결이나고대역폭스위치
기반의 통신 구조가 병렬 연산 성능을 유지하는 데 중요한 역할을 하며, 새로운 AI 인프라에서는 고속의 전문가 간
통신을보장하는인터커넥트구조가필수적이다.
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|그림 8| 병렬처리를활용한 LLM 사전학습.

2.3. 트랜스포머에서대규모언어모델(LLM)로의발전
앞서 분석한 것처럼, 트랜스포머의 등장은 시퀀스 모델링 분야에 큰 변화를 가져왔는데, 그 변화에서 중요한 핵심
중하나가병렬처리에있다고볼수있다. 기존의 RNN은 순차적으로연산을수행해야하기때문에의존성으로인해
병렬화가불가능하였지만, 트랜스포머는셀프어텐션메커니즘을도입해모든토큰간의관계를한번에병렬로계산할
수있게했다. 이로써 AI 연산속도와확장성이크게향상되었고, 자연스럽게더깊고복잡한신경망아키텍처개발이
가능해졌다. 이러한트랜스포머구조는병렬하드웨어, 특히 GPU와 같은가속기의활용을극대화하면서, AI 인프라
하드웨어설계에도중대한변화를가져오게했다.

대규모학습및파라미터최적화. 트랜스포머는데이터처리연산을구조적접근방식으로정의하는신경망 ‘아키텍처’
인 것에 비해 LLM은 트랜스포머와 같은 기반 아키텍처 위에 방대한 데이터셋을 활용한 사전 학습(Pre-Training)
을 수행함으로써 만들어진 구체적인 AI ‘모델’이다. 이러한 LLM은 트랜스포머 아키텍처의 뛰어난 확장성 덕분에
파라미터(Parameter)의수를크게늘릴수있으며,다양한최적화기법을적용하여지속적으로성능을향상시켜왔다.
대표적인 LLM의 사례로는 GPT-3, GPT-4, PaLM 등이 있으며, 이들 모두 트랜스포머 구조를 채택하여 대규모
데이터로부터 학습된 모델이라고 보면 된다. 최신 LLM 모델인 GPT-4 Turbo [90, 92, 163]와 구글(Google)의
제미니(Gemini [93, 94, 164, 165]) 등은 수십억에서 수조에 달하는 방대한 파라미터를 보유하고 있다. 여기서
파라미터는 신경망 계층 내부에서 데이터를 처리할 때 활용되는 일종의 설정값으로, 사전 학습 과정에서 광범위한
텍스트데이터(서적, 학술 논문, 웹페이지, 소셜 미디어등)를 기반으로최적화된다 [6, 166, 167].

트랜스포머의병렬구조는대규모파라미터와데이터셋을다수의 GPU에서동시에
처리할수있도록설계되었지만, 연산 요구량이높아수만에서수십만개의 GPU를

사용해도학습에수주에서수개월이소요된다.
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(a)토큰예측결과와입력토큰의비교를통한학습과정. (b)생성한토큰을다음예측에활용하는추론과정.

|그림 9| 오토레그레시브모델의동작방식.

사전학습은일반적으로셀프슈퍼바이즈드러닝(Self-Supervised Learning [168, 169]) 기법을많이활용하는
데이기법은별도의레이블(Label) 없이도모델이유의미한표현을자동으로학습하도록하는방식이다. 대표적으로
입력문장의일부단어나문장을마스킹(Masking)한후, 주변문맥을기반으로이를예측하는방법이널리사용된다.
그림 8에서나타난바와같이, 이러한대규모사전학습은모델이언어적지식, 문맥이해력, 통사적·의미적뉘앙스뿐
아니라일반상식과세계지식까지내부파라미터에내재화하도록돕는데이지식은셀프어텐션계층의쿼리, 키, 밸류
벡터와 FFN의 가중치및편향등의형태로저장된다.
이러한 LLM의 학습 과정은 매우 높은 연산량과 뛰어난 병렬 처리 능력을 요구한다 [28, 170]. 특히 혼합 정밀도
연산(Mixed-Precision Arithmetic), 다중 노드 간 분산 학습, 복잡한 그래디언트 동기화 등 최적화 기법이 사용될
경우, 병렬처리에대한요구사항은더욱높아진다. 트랜스포머의병렬구조는이러한대규모파라미터와데이터셋을
다수의 GPU 클러스터에서동시에처리할수있도록설계되었음에도불구하고, 높은연산요구사항에의해수만에서
수십만개의GPU가필요하며이수많은GPU를활용해도수주에서수개월동안지속적으로학습이이루어지는것이
일반적이다 [171–173]. 따라서이러한대규모시스템에서GPU간빈번한데이터동기화와높은메모리요구로인해
분산장치간확장성, 메모리용량, 인터커넥트설계등핵심인프라설계가매우중요한이슈로주목받고있다.

일관성 유지와 일반화 능력 확보. 대부분의 LLM, 특히 트랜스포머 기반 모델은 학습 및 추론 단계에서 오토레그
레시브(Auto-Regressive) 방식을 사용한다 [14, 167, 174]. 이는 오토레그레시브 구조가 각 토큰을 예측할 때
이전에생성된토큰만참조하여순차적으로다음토큰을생성하며, 언어데이터가가지는본질적인순차적특성을잘
반영하기때문이다. 예를들어문장생성시현재의단어는이전문맥만을기반으로결정하는데이후의단어들은예측
과정에 반영되지 않기 때문에 오토레그레시브 방식은 미래 정보가 없는 상황에서도 문맥과 흐름을 유지하며 의미상
일관성있는텍스트를생성하는데적합하다.
이러한 방식의학습과정을그림 9a에서 살펴볼수있다. 모델은 주어진시퀀스의초기토큰들만을바탕으로다음

본한글보고서는다양한독자들의이해를돕기위한목적으로직 ·번역된것으로, 정확한내용은원문기술보고서를참고하시기바랍니다.

본 문서에포함된콘텐츠는다수의특허및저작권법을통해보호받고있습니다.

19



파네시아기술리포트

토큰을예측하며, 이때 문법적, 구문적, 논리적흐름의패턴을효과적으로학습한다. 오토레그레시브학습방식은이
과정에서시계열적종속성을습득하게되어생성된텍스트의일관성을보장할수있게된다.
마찬가지로, 추론 단계에서도 앞서 언급된 오토레그레시브 방식은 동일한 원리로 동작한다. 그림 9b에 나타난
것처럼 오토레그레시브 추론 방식은 각 단계에서 생성된 토큰을 즉시 다음 예측에 필요한 입력 문맥으로 활용한다.
출력을입력으로사용하는이러한구조는결과의문맥적정확성과일관성을높이지만, 병렬 연산의기회를제한하여
병렬방식에비해상대적으로추론속도를느리게만든다. 이러한연산성능상의제약에도불구하고, 오토레그레시브
방식은복잡한언어적종속성을정확히모델링하고문맥에맞는고품질의출력을생성할수있기에다양한언어생성
작업에서널리활용되고있다.
반면, 오토레그레시브등이 가져다주는 연산적 한계를 보완하기 위한 한 방편으로, 현대의 LLM은 광범위한 사전
학습을통해높은수준의일반화능력(Generalization Capability)을 확보하는방식을적용하기도한다. 예를들어
제로샷(Zero-Shot) 또는 퓨샷(Few-Shot) 학습 방식 [98, 175, 176]을 통해서방대하고다양한텍스트데이터를
통해 풍부한 언어적 표현을 내재화한 모델은 별도의 추가 학습이 없거나 최소한의 추가 학습만으로도 여러 후속
태스크(Downstream Task)에 유연하게 대응할 수 있도록 한다. 이렇게 확보된 일반화 능력은 전통적인 자연어
처리분야를넘어이미지생성, 비디오합성, 오디오처리및대화형시스템과같은다양한다중모달응용분야로 LLM
의 활용범위를확장하는데중요한기반을제공하고있다.

LLM 추론 과정의중복연산최소화및신뢰성향상. LLM이 다양한 응용 분야에 폭넓게 활용되면서, 추론 과정에
서의 계산 효율성 및 정확도 문제를 해결하기 위한 두 가지 핵심 기술이 제안되었다. 바로 “KV 캐싱(Key-Value
Caching [66, 67, 88, 177])”과 “검색 기반 생성(RAG, Retrieval-Augmented Generation [41, 42, 63])”
이다.

KV 캐싱은긴시퀀스처리시이전결과를메모리에저장하여반복계산을피하고추론
성능을높일수있지만, GPU 메모리사용량이크게증가한다는단점이있다.

먼저, KV 캐싱은 LLM의셀프어텐션연산과정에서발생하는중복계산을줄이기위한기술로상당한연산속도의
개선을 가져다준다. 다시 말해, 오토레그레시브 추론에서는 각 토큰을 생성할 때마다 이전 토큰들과의 관계를 반복
적으로계산해야하는데, 이는입력시퀀스길이가길어질수록급격히증가하고별도의최적화가없으면심각한성능
저하로이어질수밖에없다. 이러한 문제를해결하기위해, 그림 10a와 같이, KV 캐싱은 처음계산된셀프어텐션의
결과를 키-값 형태로 GPU 메모리에 저장하고, 이후 추론 단계에서 이를 재사용함으로써 중복 연산을 방지한다.
따라서 KV 캐싱은긴시퀀스처리시메모리에저장된이전에만들어진결과를재사용하여애초에관련된반복계산
자체를피하고추론성능을현저히개선할수있다. 그러나이러한데이터저장을통한계산대체방식은GPU메모리
사용량을상당히증가시킨다는단점이발생할수밖에없다. 모델크기, 입력토큰수, 그리고추론의복잡성에따라KV
캐싱데이터는GPU메모리의30%에서최대 75%를차지하며 [29–31, 178], 필수데이터들이단일GPU메모리에
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(a) GPU 메모리에캐싱되는키-값 쌍. (b)외부데이터베이스검색.

|그림 10| 추론최적화기법.

수용되지않는경우를빈번하게만든다.
반면에, KV 캐싱이 계산효율성을 극대화하기 위한 기법이라면, RAG는 LLM이 본질적으로 가지고 있는 “환각
현상”(Model Hallucination)을 방지하기 위한 기술이다 [179, 180]. 환각 현상은 모델이 실제 존재하지 않거나
잘못된 정보를 사실처럼 생성하는 문제로, 쉽게 이야기하면 LLM이 학습 과정에서 얻은 정적인 지식만으로 실시간
외부정보를반영하지못하기때문에발생한다고볼수있다. 이러한한계를극복하고자, RAG는추론과정에서외부의
지식데이터를실시간으로검색해결과에반영하는방식을사용한다. 그림 10b에처럼, 입력쿼리가주어지는경우에
대해서 RAG를 적용한 LLM은 벡터 데이터베이스(Vector Database) [181–183]나 검색 시스템 [62, 184–186]
에서관련최신정보를먼저찾아낸다. 검색된정보는입력과결합되어최종답변생성에활용되며, 이를통해모델의
환각현상을줄이고결과의정확도를높일수있다.
그러나 RAG 역시 쿼리 임베딩 생성, 벡터 기반 유사도 검색, 검색 결과 통합 등 여러 단계의 추가 연산을 필요로
하므로, 아쉽게도어쩔수없이전체시스템의복잡도가증가할수밖에없다. 또한, 대규모벡터데이터베이스운영을
위한 추가 메모리 자원이 요구되며, 외부 정보 검색 성능은 응답의 지연과 정확도에 직접적인 영향을 미치기 때문에
네트워크지연과대역폭도중요한성능지표로고려해야한다.

RAG는 외부지식을실시간으로반영해 LLM의 환각현상을방지하지만, 추가 연산과
메모리자원을요구하며네트워크지연과대역폭도중요하게고려해야한다.

분명, KV 캐싱은셀프어텐션의중복연산을최소화해추론속도를높이고, RAG는외부의실시간정보를결합하여
생성결과의신뢰성과정확성을높이는것으로, 이 둘은모두 LLM 추론과정의주요병목현상을효과적으로해결할
수있는기술이다. 하지만, KV 캐싱과 RAG 두기술은 GPU 메모리와계산자원, 네트워크대역폭및저장장치인프
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라에 상당한 부담을 초래함도 사실이다. 따라서 LLM 워크로드를 효과적으로 지원하기 위해서는 고대역폭, 저지연
인터커넥트기술등을잘적용하여가속기간망을구성해야하며 AI 인프라내의가속기와메모리들이높은확장성을
가질수있도록컴포저블구조를갖춘데이터센터아키텍처가필수적으로요구되는방향으로전환이일어나고있다.

본한글보고서는다양한독자들의이해를돕기위한목적으로직 ·번역된것으로, 정확한내용은원문기술보고서를참고하시기바랍니다.

본 문서에포함된콘텐츠는다수의특허및저작권법을통해보호받고있습니다.

22



3. LLM확장: 다중가속기시스템에서데이터센터
규모인프라까지

현대데이터센터는추천시스템 [187–189], 랭킹알고리즘 [190, 191], 비전모델 [192, 193] 등다양한AI 워크로
드를처리할수있도록지속적으로발전해왔다. 그러나 LLM의경우, 좀더높은메모리및통신수요를발생하고이로
인해기존의다른워크로드와비교했을때데이터센터인프라에훨씬더큰부담을준다. 이를좀더심도있게이해하기
위해, 본 절에서는먼저기본적인 LLM 개념이다중가속기시스템(Multi-Accelerator Systems) 환경에서어떻게
구현되고 있는지 살펴볼 것이다. 이어서, 현대의 데이터센터가 수천 개의 GPU 또는 가속기4를 활용하기 위해 어떤
아키텍처적및모듈화전략을채택하고있는지분석한다.
마지막으로, CPU와 GPU가 밀접하게 통합된(Tightly-Integrated) 아키텍처가 가지는 근본적인 한계를 논의
한다. 이러한 CPU-GPU 밀접 통합 구조는 데이터센터의 확장성, 유연성, 효율적인 자원 활용에 제약이 생기는데,
이 제약을 극복하고 대규모 AI 워크로드의 요구사항을 충족시키기 위해서는 CPU, GPU, 메모리 및 네트워크 구성
요소가독립적으로확장가능하도록모듈화된설계가필요하다는점을논의할것이다.

3.1. 다중가속기시스템에서의 LLM적용과도전과제
현대 LLM은 그 규모가 지수적으로 커지면서, 단일 GPU가 제공 가능한 메모리 용량과 연산 성능의 한계를 이미
넘어섰다 [43, 44, 194]. 이에 따라, 데이터센터에서는 대규모 모델을 수천에서 수십만의 GPU에 분산 배치하여
병렬 실행하는 구조가 일반적이 되어가고 있다. 이러한 다중 GPU 환경에서 각 GPU는 전체 모델 중 특정 부분의
4본기술보고서의기술개요에서설명되었듯이, 본 절 분석에서는 GPU와 가속기라는용어는혼용하여사용한다.
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|그림 11| 트랜스포머기반모델에서의텐서분할과동기화.

파라미터와 연산만을 담당하되 수많은 GPU가 동시에 하나의 문제를 풀 수 있도록 하는 형태로 실행된다. 이러한
실행을위해효과적인병렬처리와분산학습이가능하도록다양한방법들이사용되고있다.

다중 GPU 환경에서의 LLM 학습: 모델 분할, 병렬화, 그리고 오버헤드. 다중 GPU 기반의 LLM 학습에서 가장
중요한 과제는 거대한 모델 파라미터, 활성화값(Activation), 그리고 그래디언트를 수많은 GPU들에 효율적으로
분할하고동기화하는 것이라해도 무방할 정도이다. 다수의 GPU에 분할, 병렬 실행하는 동안에도 연산의 일관성을
유지하면서정확하고효과적인분산학습을가능하게해야한다. 그림 11은 트랜스포머기반 LLM 모델에서의 GPU
간 “텐서(Tensor)” 분할 및 동기화 전략을 나타내는데, 특히 셀프어텐션과 FFN 계층에서 발생하는 중간 결과가
GPU 간에 빈번하게 교환되는 과정을 좀 더 자세히 나타내었다. 앞서 거듭 설명되었지만, 트랜스포머의 셀프어텐션
메커니즘은시퀀스내모든토큰간상호작용을계산하게되어있다. 이는언뜻보기에는쿼리, 키, 밸류벡터를 GPU
간에 나눠서 계산하고 전달해야 할 것 같지만, 실제로는 멀티 헤드 어텐션과 쿼리 그룹 어텐션과 같은 구조를 통해
전체어텐션계층을여러개의독립적인소규모계층으로병렬화할수있도록설계되어있다고볼수있다. 따라서각
GPU는 자신에게할당된소규모어텐션계산을독립적으로수행하기때문에다중가속기시스템에매우최적화되어
있다. 이러한 병렬 실행 구조에도 불구하고 실제 어텐션 처리는 LLM의 최대 병목 중 하나인데 그 이유는 각 GPU
가그계산결과와그래디언트를다른 GPU들과주기적이면서도빈번히동기화해야하기때문이다 [29, 195, 196].
이러한 동기화 과정은 모델 전체의 일관성과 수렴성을 보장하기 위한 필수 조건이기 때문에 생략될 수 없으며, 이로
인해다중가속기시스템에서 GPU 간 통신대역폭과메모리자원에큰부담을주게된다.

다중 GPU 기반 LLM 학습의주요과제는거대한모델파라미터, 활성화값,
그래디언트를다수의 GPU에 효율적으로분할하고동기화하는것이다.

셀프어텐션 외에도, 상위 절에서 논의되었던 것처럼 트랜스포머는 토큰 단위로 독립적인 연산을 수행하는 FFN
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(a)파이프라인병렬화. (b)텐서병렬화.

|그림 12| 트랜스포머구조를위한파이프라인병렬화와텐서병렬화기법.

계층을 포함하고 있다. FFN의 연산 또한 병렬 처리에 적합하도록 설계되어 있지만, 아쉽게도 순전파(Forward
Pass)와 역전파(Backward Pass) 단계에서는 중간 결과와 그래디언트를 GPU 간에 교환하여 동기화할 필요가
있다 [197–201]. 특히, 그래디언트동기화는매우빈번히일어나므로다중가속기시스템에서 GPU 간 통신오버헤
드를크게증가시키는것으로잘알려져있다 [202–204].
이러한 GPU 간 통신 문제를해결하기위해, LLM 학습에서는이미파이프라인병렬화(Pipeline Parallelism) 및
텐서병렬화(Tensor Parallelism)와같은고급병렬화기법들이중요하게활용되고있다 [43, 45, 170, 205, 206].
그림 12a에 도식화된 것처럼, 파이프라인 병렬화는 모델을 여러 개의 연산 단계(Stage)로 나누고, 각 단계를 각기
다른 GPU 클러스터에서 순차적으로 처리하는 방식이다. 이를 통해 GPU나 가속기 같은 연산 자원들의 활용도를
극대화할수있지만,각연산단계간에데이터의존성이존재하므로정확한데이터교환과동기화가이루어지지않으면
파이프라인버블(Pipeline Bubble)이라는유휴시간이발생하고심각한성능저하를야기할수있다 [45, 170, 207–
209]. 따라서 GPU의 활용도를 높이기 위해서는 이러한 데이터 교환 타이밍을 세밀하게 조정하는 것이 중요하다.
일반적으로파이프라인병렬화는각단계의연산량이매우크고, 단일GPU의연산능력조차초과하는대규모모델에
효과적으로알려져있다 [28, 43, 170].
한편, 텐서 병렬화는파이프라인병렬화의보완책으로서, 행렬 곱(Matrix Multiplication)과 같이 규모가큰텐서
연산을 여러 GPU에서 동시에 수행하는 방식이다. 그림 12b는 이러한 텐서 병렬화 구조를 나타낸다. 텐서 병렬화
는 올-리듀스(All-Reduce), 올-게더(All-Gather), 리듀스-스캐터(Reduce-Scatter) 등과 같은 집합 통신 연산
(Collective Communication Operations)을 통해 GPU 간에 중간 연산 결과를 주기적으로 동기화하는데 이때
GPU 간이동해야하는데이터가매우방대하다 [32, 210–215]. 집합통신연산에서GPU 간동기화는분산된연산
결과의 일관성을 유지하기 위한 필수 과정이며, 이에 대한 방대한 데이터 이동은 높은 성능의 인터커넥트 기술 및
최적화된통신알고리즘지원없이는다중가속기시스템의성능을급격히저하할수있다.
한편, MoE와 같은 동적으로 계산 자원을 할당하는 모델 구조가 등장하고 그 이용이 대중화됨으로써, 학습 워크
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(a)전문가병렬화의실행방식. (b)전문가병렬화의동기화오버헤드.

|그림 13| MoE 구조를위한전문가병렬화기법.

플로우의 복잡성이 현저히 높아지는 것도 중요한 문제 중 하나이다 [162, 216]. 그림 13a는 다중 가속기 시스템이
MoE전문가모듈을GPU간에분산하여구성하고실행하는방법을보여준다. 그림에나타나있듯, MoE구조에서각
GPU는 개별적인전문가역할을수행하며, 특정 입력데이터의하위집합에대해독립적인순전파및역전파연산을
처리한다 [158, 162, 217–219]. 입력 시퀀스는미리정의된기준또는라우팅(Routing) 전략에 따라적절한 GPU
로 분배되는 방식으로 스케줄링(Scheduling)된다. 예를 들어, 문장이나 질의 내의 특정 부분(토큰 또는 세그먼트)
은 모델의 전문가 선택 정책에 따라 미리 지정된 GPU로 전달되며, 각 GPU는 독립적으로 할당된 연산을 수행하여
다중가속시스템의연산병렬성을최대화한다.
하지만 최종적으로 의미 있는 예측 결과를 얻기 위해서는 각 전문가가 처리한 중간 결과를 GPU 간에 반드시
통합하고 동기화해야 하므로 수많은 GPU가 멈춰야 하는 오버헤드를 피할 수 없다는 문제가 있다. 그림 13b에서
알 수 있듯이, MoE 구조에서 중간 결과의 집계 및 동기화 과정은 수행 중인 모든 전문가와 GPU가 데이터 이동이
끝나길 기다리기 때문에 매우 비싼 작업이며, 이러한 동기화 작업은 전체 모델의 일관성을 유지하기 위해 전문가 간
그래디언트통합을포함하여아주빈번히발생한다. 따라서이러한MoE 모델의학습은필연적으로다중시스템에서
GPU 간 통신 부담을 극단적으로 증가시키기 때문에, 이러한 학습 등을 수용하기 위해서라도 새로운 AI 인프라는
높은대역폭과낮은지연을보장하는정교한인터커넥트기술의설계와도입이필수적이다.

MoE와 같은병렬모델은 GPU 간 통신부담을크게증가시키므로, 높은 대역폭과낮은
지연을제공하는정교한인터커넥트설계가필수적이다.
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(a) GPU 간 키, 밸류 벡터재사용을위한 KV 캐싱. (b)대규모검색기반의 RAG.

|그림 14| 추론최적화기법의통신오버헤드와메모리오버헤드.

다중 GPU 환경에서의 LLM 추론: 최적화 기술과 도전 과제. LLM 학습과 달리 LLM의 추론 단계는 연산 속도와
실시간응답성의성능을중요시하는워크로드들로구성되어있는경우가많다 [220–222]. 과거 이러한상황에서는
고속 GPU나 도메인에 특화된 하드웨어 가속기들을 다수 수용함으로써 많이 해결할 수 있었다. 그러나 대규모의
입력과 모델 등의 영향에 따라 단순히 GPU의 계산 성능만으로 LLM의 복잡한 요구를 만족시키기 어려워짐에 따라
최근다양한추론최적화기법들 [223–225]이 제시되고있다. 이러한추론최적화기법의도입과모델크기증가에
따라, 오늘날 최적화된 실제 추론 경로에서는 GPU 간 “통신 대역폭”과 “메모리 용량”이 주요 성능 병목 요인으로
작용하고있다.

최적화기법의도입과모델크기증가에따라, 오늘날추론경로에서도 GPU 간 통신
대역폭과메모리용량이주요성능병목요인으로작용하고있다.

이러한 병목 요인의 이해를 돕기 위해 그림 14는 가장 많이 사용되는 추론 최적화 기법인 KV 캐싱과 RAG를
적용했을때나타나는다중가속기시스템의 GPU 간 통신패턴및외부데이터접근방식의차이를보여준다. 먼저,
그림 14a에 나타난 KV 캐싱은앞서언급된것처럼이미계산된쿼리, 키, 밸류 벡터를 GPU 메모리에미리저장하고
반복적인 추론 단계에서 저장된 값들을 재사용하여 중복 계산을 방지하는 기법이다. 오토레그레시브 방식을 포함
대부분의LLM추론에서는각토큰을생성할때마다이전모든토큰과의관계를반복적으로계산해야하므로불필요한
연산이누적되는데, KV 캐싱은이러한중복연산을방지하여성능을상당히개선할수있다 [33, 68]. 특히 긴 입력
시퀀스를다룰때추론지연을매우효과적으로감소시킬수있다. 하지만 KV 캐싱은전체 GPU 메모리의 30%에서
75%까지 차지하고 있으며, 모델의 크기와 컨텍스트 윈도우(Context Window)의 길이가 증가할수록 저장해야
하는 KV 캐시의 총량이 기하급수적으로 늘어나기 때문에, AI 인프라를 구축하는 데 있어서 상당한 문제로 주목받을
수밖에없다. 현재구조에서는KV캐싱이단일GPU메모리가수용할수있는한계를넘어데이터를관리해야하므로,
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이러한키-값데이터를여러GPU에분산저장하고일관성을유지하기위한GPU간동기화를빈번히요구하게되며,
이에 따라전체시스템의메모리관리복잡도와통신오버헤드를동시에증가시키고있다 [67, 226].
한편, RAG는 LLM의정확성과사실기반응답신뢰도를높이기위해도입된기술로, KV 캐싱과는또다른형태의
자원부담과복잡성을초래한다. 그림 14b에서보듯, RAG는추론단계에서외부지식베이스(예: 벡터데이터베이스,
문서 저장소)로부터 관련 정보를 실시간으로 검색한 후, 이를 기반으로 LLM이 최종 응답을 생성하는 방식이다. 이
접근법은 앞서 언급된 것과 같이, 모델 자체가 학습한 내재적 지식만으로는 최신 정보나 문맥에 맞는 정확한 응답을
제공하기어려워발생하게되는환각문제를효과적으로완화할수있다 [62, 227–229]. 구체적으로RAG는다음과
같은 세 단계로 구성된다: (1) 쿼리 임베딩 생성, (2) 벡터 유사도 기반 검색(Similarity-Based Retrieval), (3)
검색된외부정보와원입력을결합하여디코딩수행. 이 과정들은각각별도의연산흐름관리와외부메모리접근을
요구하며, 이외에도검색된데이터를일시적으로저장하기위한추가적인메모리공간이필요하다. 또한외부데이터
참조를위해GPU가고속으로외부데이터베이스를쿼리해야하므로비 RAG기반시스템과달리네트워크대역폭과
지연이 전체 추론 시간에 직접적인 영향을 준다. 이러한 네트워크 의존성은 시스템 구조와 아키텍처 설계에 많은
영향을 줄 수밖에 없다. 예를 들어, 벡터 검색을 수행하는 서버와 추론을 담당하는 GPU 간의 통신 지연이 길어질
경우, 모델은 검색 결과를 기다리며 유휴 상태에 머물게 되어 매우 비효율적인 운영을 하게 된다. 따라서 RAG 기반
시스템을 지원하는 AI 인프라 구조에서는 고성능 네트워크 인터페이스 카드(NIC, Network Interface Card)와
저지연네트워크패브릭(Network Fabric)을 필수적으로사용하고있으나 [41, 62, 230] 이러한 장거리네트워크
요소들은전체시스템의심각한성능저하를유발하기에최신AI인프라에서는다수의장치들을연결할수있는단거리
인터커넥트기술들이제시되고다양한시스템에적용되고있다.
추론에서는 KV 캐싱이나 RAG 같은 최적화 기술이 적용되어도 오토레그레시브 방식의 구조적 특성등으로 인해
제한되는 성능을 개선할 수 있는 것에 한계가 존재한다. 오토레그레시브는 앞서 논의된 것처럼 시퀀스 생성 시 각
토큰이 이전에 생성된 모든 토큰에 명시적으로 의존하게 되므로, 각 단계가 반드시 순차적으로 수행되어야 한다는
단점이 있다. 이는 토큰 생성 과정을 병렬화하기 매우 어렵게 만들며, 이를 해결하기 위해 다중 가속기 시스템은 필
수적으로오토레그레시브작업등의중간계산결과를관련 GPU들끼리신속히교환하게하고정밀히동기화시켜야
한다. 따라서연산속도와응답성과같은가속기성능지표에만의존하던과거추론달리현대추론시스템은네트워크
통신 속도뿐 아니라 GPU 간의 낮은 연결 지연을 보장하도록 가속기 간 인터커넥트 성능과 효율성 등에 신경 써야
한다.

KV 캐싱은중복연산을줄이지만 GPU 메모리소모를늘리고, RAG는 신뢰성을
높이지만통신과저장소부담을키운다. 오토레그레시브구조는문맥일관성을제공하나

병렬성제한과동기화오버헤드가따른다.

종합적으로 생각해 보면, 현대의 LLM 추론 환경은 단순한 계산 성능만으로 충족할 수 없는 다양한 시스템 수준의
요구사항을동반할수밖에없다. KV캐싱은중복연산을줄여주지만, GPU메모리소모를증가시키며, RAG는응답의
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(a)스케일업과스케일아웃아키텍처. (b)네트워크패브릭으로연결된 GPU 클러스터.

|그림 15| 다중가속기시스템의스케일업과스케일아웃전략및그구조.

신뢰성을높이는대신외부데이터접근및통합처리에따른통신과저장소요구를가중한다. 오토레그레시브구조는
문맥적일관성을제공하지만, 병렬 처리의제한과동기화오버헤드를수반한다는문제를동시에가진다.
따라서현대적인LLM추론워크로드를효과적으로처리하려면단순히빠른GPU나특정응용이나도메인에특화된
가속기를추가하는접근이아니라, 전체아키텍처수준에서메모리계층구조(Memory Hierarchy), 네트워크인터
커넥트, 캐시 일관성유지전략등을포괄적으로재설계해야한다. 특히 지연, 처리량, 메모리 활용률, 통신 효율성과
같은다양한성능지표를균형있게고려하는모듈형및컴포저블인프라설계가매우중요해지는시점이다.

3.2. 다중가속기시스템의확장: 스케일업과스케일아웃아키텍처
다수GPU를사용하는학습과추론과정에서발생하는GPU간통신문제를해결하려면,성능및확장성요구사항에
맞추어 설계된 정교한 하드웨어 인터커넥트와 네트워크 솔루션이 필수적이다. 이때 사용되는 구조적 구성 전략은
주로 “스케일업(Scale-up)”과 “스케일아웃(Scale-out)”으로 나누어진다. 데이터센터의 스케일업 아키텍처는
NVLink [71–73], NVLink Fusion [74, 75, 231, 232], UALink [69, 70], CXL [54–56]과 같은 고속의 특화된
인터커넥트를 사용하는 반면, 스케일아웃 아키텍처는 Ethernet [233–236]이나 InfiniBand [237–240]와 같은
장거리고대역폭네트워크를활용한다.

스케일업(Scale-up) 아키텍처: 고속직접연결방식. 그림 15a는 다중 가속기 시스템 환경에서 스케일업과 스케
일아웃 GPU 인터커넥트아키텍처를비교하여보여준다. 스케일업 방식은소수의 GPU를 특수 설계된고속가속기
중심(Accelerator-Centric) 인터커넥트로긴밀하게연결한다. 이러한 직접적이고높은대역폭의연결은긴밀하게
결합된 GPU 클러스터 내에서 빈번하고 많은 양의 데이터 교환이 필요한 작업에 특히 효과적이다. 따라서 현재
스케일업 방식은 노드 내부의 GPU 간 통신 속도를 극대화하고 지연 시간을 최소화해야 하는 워크로드에 적합하며,
학습, 실시간추론, GPU 연산중심의 AI 작업 등계산집약적인작업의성능을크게향상시킨다.
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LLM과 최근의 데이터센터 아키텍처가 등장하기 이전에는, 이러한 긴밀한 직접 연결 방식을 필요로 하는 GPU의
수가상대적으로제한적이었다고할수있다. 그러나최근들어모델의복잡도가증가하고데이터양도급격히늘어나면
서 [173, 194], 고속연결성을요구하는GPU의수가기하급수적으로증가하고있다. 더욱이최신LLM최적화기법들
중상당수는고속·저지연데이터교환과지속적인 I/O데이터공유를필요로한다 [24, 28, 43, 45, 170, 241–243].
그 결과, 현대 데이터센터에서는 더 많은 GPU를 랙(Rack) 단위로 밀집 배치하여 계산 효율성을 극대화하고, 통신
오버헤드를 최소화하며, 총소유비용(TCO, Total Cost of Ownership)을 낮추는 경향이 뚜렷해지고 있다. 예를
들어, NVIDIA는고밀도GPU배치를위해콤팩트하고수랭식으로설계된새로운노드유닛을제안하고고속NVLink
및 NVSwitch 인터커넥트를활용하여랙당최대 72개의 GPU를긴밀하게통합하여데이터센터업체들에게제공을
시작하였다 [244]. 이와같은고속직접연결방식의배치는계산처리량을높이고GPU간통신효율성을최적화하는
동시에, 열 관리를향상시켜운영복잡성을줄이고 TCO를 감소시키는장점이있다.

스케일업은고속의직접연결방식으로다수의가속기를연결하는반면, 스케일아웃은
장거리네트워크패브릭을통해연결하는방식이다. 최근 LLM과 같이데이터교환과
동기화가빈번한워크로드가많아지면서, 스케일업방식의중요성이더욱커지고있다.

스케일아웃(Scale-out) 아키텍처: 장거리네트워크인터페이스. 반면스케일아웃구성방식은수천에서수십만개
의GPU가여러랙또는노드에걸쳐분산되는데이터센터수준의대규모환경을위해설계되었다. 광범위한확장성과
유연한자원관리가가능하도록스케일아웃아키텍처는주로 NIC과 RDMA 기반의통신프로토콜을활용하여 GPU
간의 상호작용을 지원하는 “장거리(Long-Distance)” 네트워크 패브릭을 사용한다 [245–247]. 그림 15b에서
나타낸것처럼, 스케일아웃에서GPU는원격네트워크패브릭을통해상호연결된클러스터형태로구성되어있으며,
전체 시스템은이러한다수 GPU들을그룹화하고동적인시스템구성이가능하도록설계된다.
장거리 네트워크 기반의 패브릭은 뛰어난 확장성과 유연성 및 높은 집합 대역폭(Aggregate Bandwidth)을
제공하지만, 심각한 오버헤드를 수반한다는 단점이 있다. 이 네트워크 패브릭 오버헤드는 복잡한 하드웨어 설계,
정교한네트워크프로토콜및소프트웨어기반의통신으로인해발생한다. 구체적으로, 데이터의직렬화및역직렬화
(Serialization/Deserialization), 네트워크프로토콜처리, 그리고소프트웨어수준의상호작용으로인해, 긴밀하게
결합한하드웨어기반의스케일업아키텍처에비해통신지연이현저하게증가할수밖에없다 [52, 53, 61]. 따라서
대규모분산형AI 시스템설계시에는이러한스케일업과스케일아웃사이의성능과효율성간의절충안(Trade-Off)
을 면밀히평가하고고려하는것이필수적이다.
한편, 현재 AI 인프라에서전통적인CPU도스케일업및스케일아웃시스템모두에서대규모다중가속기시스템을
지원하는데여전히필수적인역할을수행한다. GPU가 주된연산작업을담당하는동안 CPU는시스템의오케스트
레이션역할을수행하며, GPU 간의 조정, 데이터 전송및네트워크인터페이스관리를담당한다 [210, 248–250].
결과적으로 각 GPU 또는 GPU 클러스터는 하나 이상의 CPU와 NIC를 핵심 구성 요소로 통합되는 방식을 많이
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|그림 16| 데이터센터의계층적구조.

쓰고 있다. 스케일업과 스케일아웃 두 영역에서 모두, 과거에도 본 기술 보고서에서 제시된 방식과 유사하게 자원
분리(Disaggregation)를 구현하려는 시도는 존재했다. 그러나 CPU는 버스 인터페이스와 메모리 컨트롤러를
관리하면서GPU또는가속기와직접연결되는호스트프로세서역할을수행해야하므로, 완전한물리적자원분리는
현실적으로이루어진적이없다 [251–254]. 최근의산업트렌드는오히려앞서이야기한것처럼단일노드내에서의
더욱긴밀한통합을강조하거나, 모듈단위로확장하는방식을채택하고있다. 이러한노드수준에서의통합사례로는
NVIDIA의 최신 GPU 모델(Grace Blackwell)이 대표적이며, 이에 대해서는다음절에서추가로살펴볼예정이다.

3.3. 대규모 AI 인프라: 그레이스블랙웰아키텍처기반의계층형데이
터센터구조

실제 대규모 데이터센터는 다양한 워크로드 특성과 이로 인해 변화하는 인프라 요구사항을 효과적으로 처리하기
위해 계층형(Hierarchical) 아키텍처를 많이 사용하고 있다. 그림 16은 데이터센터의 최소 구성 단위부터 이를
조합하여하나의큰구조물단위까지를걸쳐설계되는계층적구조를단계별로도식화하고있다. 이구조는컴퓨팅과
네트워크 자원을 여러 계층으로 나누어 추상화하며, 각 계층은 하위부터 상위까지 “노드(Node)”, “랙(Rack)”, “열
(Row)”, “층(Floor)”, 그리고 최종적으로 “건물(Building)” 단위로 설계하여 다중 가속기 시스템을 대규모 형태로
구성할수있게한다 [255–259].
그림에서볼수있듯이,데이터센터의가장하위계층인노드는컴퓨팅의기본단위로, CPU, GPU, 메모리,네트워크
인터페이스등필수적인연산요소들을통합한형태이다. 이노드들이집적된랙은연산요소들의계산밀도를높이고
네트워크연결의효율성을향상시키기위해다양한방법으로구성될수있다. 다만 하나의랙에수용할수있는노드
수는랙의물리적크기에한정되므로 [260, 261], 데이터센터는다수의랙을모아열5을형성시키며, 이러한다수의
열을 다시 층 단위로 결합시키는 방식으로 수많은 GPU들을 조직화한다. 최종적으로 여러 층의 조합이 단일 건물

5특정벤더의랙스케일설계에서는이를슈퍼파드(Superpod)라고 부르기도한다.
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(a)블랙웰아키텍처 (GB200 모듈). (b)두개의 GB200 모듈이탑재된컴퓨트노드.

|그림 17| GB200의 노드수준구성.

수준의통합인프라를완성하여고밀도및대규모 AI 클러스터구축을가능하게한다.
본 절에서는 노드 수준의 구성에서 출발하여 랙, 열, 층, 그리고 마지막 건물 단위까지 확장하면서, 각 단계에서
컴퓨팅및네트워크자원이어떻게통합되고최적화되는지를순차적으로설명한다. 특히본절에서는NVIDIA의최신
그레이스 블랙웰 아키텍처 [20, 21, 244, 262, 263]를 노드 구성의 대표적인 예시로 활용하여, 현대 데이터센터
설계의 핵심 개념을 구체적으로 설명하고자 한다. NVIDIA의 블랙웰 아키텍처는 GPU당 HBM [36–38, 264]
용량을 확장하고 CPU-GPU 간 통합 구조를 강화하여 메모리 관리, GPU 간 통신, 연산 조정과 관련된 병목 해소를
목표로설계된대표적인데이터센터아키텍처로, 최신 대규모 AI 인프라에널리활용되고있다.
현기술보고서에서블랙웰GPU의구체적인사례를통해개념이해를돕고는있지만, 본절의목적은특정하드웨어
사례에 국한하지 않고 계층형 데이터센터 아키텍처의 전반적 이해를 제공하는 데 있다. 따라서 블랙웰 아키텍처는
현대적 AI 인프라설계의예시로사용되며, 이후섹션에서는보다일반화된구조적통찰을바탕으로다양한설계접근
방식을소개하고, 이에 따른확장가능성및제약조건을논의한다.

노드 및 랙 수준 구성: CPU-GPU 모듈의 계층적 통합. 앞서 소개된 것처럼, 현대 AI 데이터센터의 기본 구성
단위는컴퓨트노드로, 이는 CPU, GPU, 메모리, 네트워크인터페이스가통합된독립적연산장치이다. 그림 17a는
이러한 노드를 구성할때 하드웨어로써 포함될 수 있는 NVIDIA의 그레이스 블랙웰, GB200 모듈 구조를 예시로
나타낸다. 그림을 보면 알 수 있듯이 하나의 GB200 모듈은 72개의 코어를 포함한 ARM 기반 CPU 1개와 GPU
2개로 구성되며, 모듈 내의 CPU와 GPU는 NVLink 칩투칩(C2C, Chip-to-Chip) 인터페이스를 통해 고속으로
연결된다 [231, 232].
각 GPU는 약 192GB 용량의고대역폭메모리(HBM3e)를 내장하고있으며, GPU당 최대 8TB/s의 메모리대역
폭을 제공하여 대규모 AI 모델 학습 및 추론 워크로드에 적합하도록 구성되어 있다 [20, 21]. CPU는 최대 480GB
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(a) NVSwitch를 통한내부연결. (b) ToR 스위치를통한외부연결.

|그림 18| GB200 기반의랙수준구성.

의 LPDDR5X DRAM을 갖추고 있고 [265–267], NVLink C2C 인터페이스를 통해 GPU와의 메모리 일관성을
유지하면서약 900GB/s의 대역폭으로통신한다 [37, 231, 232, 268–270]. 이 고집적설계를통해 GB200 모듈
내부의 CPU와 GPU는 노드수준에서일관된공유메모리공간을형성한다.
각 컴퓨트 노드는 데이터센터 외부의 네트워크 패브릭과 고속 연결을 위해 고성능 NIC을 내장한다. 고성능 통신
을 위해 NVIDIA의 블루필드 데이터 프로세싱 유닛(DPU, Data Processing Unit [271, 272]) 또는 커넥트엑스
(ConnectX) 어댑터 [273, 274]가 직접장착되어하드웨어기반네트워크기능가속을지원하기도한다. 일반적으
로 노드당 400–800Gb/s 수준의 대역폭을 제공하는데 각 노드는 RDMA를 통해 저지연, 고 처리량 데이터 전송이
가능하다. 이렇게 구성된 노드들은 데이터센터 수준의 네트워크에 직접 참여하며 내부 클러스터 작업뿐 아니라
외부와의 통신도 처리할 수 있다. 예를 들어 그림 17b와 같이, 하나의 컴퓨트 노드는 두 개의 GB200 모듈(총 CPU
2개와 GPU 4개)을 탑재할수있으며, 이는 고밀도랙배치를고려해 1U 또는 2U 폼팩터로구성된다 [262, 263].
나아가 랙 수준 아키텍처에서는 이러한 다수의 컴퓨트 노드들을 집적하여 고밀도 연산 클러스터를 구성한다.
그림 18a는 GB200 기반의 대표적인 랙 아키텍처를 나타낸다. 이 아키텍처에서는 노드들이 NVLink나 UALink와
같은 내부 인터커넥트 패브릭을 통해 상호 연결된다. 일반적으로 단일 랙은 최대 36개의 GB200 모듈을 포함할 수
있으며, 이에 따라 총 72개의 GPU와 36개의 CPU로 구성되게 된다 [262, 263]. 랙 내부의 GPU들은 전용 내부
인터커넥트 스위치(NVSwitch 등 [71–73])를 통해 서로 연결되어 높은 대역폭과 낮은 지연을 제공할 수 있도록
설계될수있으며, 이는빈번한데이터교환이요구되는대규모모델학습및실시간추론에적합한 “스케일업도메인”
을 형성하게한다.
동시에, 그림 18b에서 볼수있듯이, 랙 내 각노드는 “랙 상단(ToR, Top of Rack)”의 장거리네트워크스위치에
직접 연결된다. ToR 스위치 [275–278]는 랙 내 모든 노드의 트래픽을 집계하며 고성능 외부 대역폭을 동시에
관리할수있도록해준다. 이를통해노드간네트워크트래픽관리가용이해지고, 케이블구성을간소화할수있으며,
외부 통신 지연을 최소화하도록 설계한다. 결과적으로 이들을 어떻게 구성하는가에 따라 운영 효율성과 시스템
확장성이완전히달라질수있다. 참고로데이터센터인프라가랙단위를넘어확장될수있도록, ToR 스위치는상위
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(a)열수준구성. (b)층수준구성.

|그림 19| 열수준과층수준구성.

네트워크 장비와의 업링크 연결을 제공하도록 설계 및 구현되는 것이 일반적이다. 이러한 업링크는 스파인-리프
네트워크구조에서집계스위치(Aggregation Switch [279, 280]) 또는 리프 스위치(Leaf Switch [281–284])
에 연결되며, 구조화된 연결을 통해 랙 간, 열 간, 층 간 및 건물 간 확장을 가능하게 한다. 다시 말해 ToR 스위치는
랙내부의통신을집계하는동시에, 데이터센터전체네트워크와의브리지역할을수행한다고볼수있다. NVLink와
같은랙내부인터커넥트와 ToR 스위치를통한외부네트워크연결의결합은, 현대 AI 인프라설계에서 GPU 성능과
확장성을동시에충족시키는핵심구조이자확장성의한계를가져다주는문제요소이기도하다.

열및층수준의구성: 인프라확장. 현대데이터센터아키텍처는일반적으로고밀도의컴퓨트랙(Compute Rack)
들을 여러개의열단위로구성하고, 각 열 내에서발생하는데이터트래픽을집계하고라우팅하는별도의 “네트워크
랙(Network Rack)”을 해당열내에배치하는방식으로이루어진다. 네트워크랙은주로 ToR 스위치들이연결되는
집계스위치또는스파인-리프구조의스위치들로구성되며, ToR스위치들과함께동일열에속한여러컴퓨트랙간
통신의백본(Backbone)을 형성하는데사용된다.
그림 19a는이러한현대데이터센터의열단위다중가속기시스템구성사례로서, 복수의컴퓨트랙이앞서언급된
인피니밴드나 이더넷 기반의 고속 스위치를 통해 네트워크 랙과 연결된 구조를 보여준다 [285, 286]. 그림에서
볼 수 있듯, 각 열은 여러 개의 고밀도 컴퓨트 랙으로 구성되며, 각 랙 내부는 다수의 컴퓨트 노드들를 포함한다.
열 중앙이나 양단에 위치한 전용 네트워크 랙은 모든 컴퓨트 랙 간 데이터 트래픽의 집계 및 라우팅을 수행하도록
구성되어있다. 예를들어, 네트워크랙의스위치는인피니밴드기반의퀀텀-2(Quantum-2 [287, 288])나 이더넷
기반의스펙트럼-X(Spectrum-X [289])와 같은고대역폭구조를사용하여랙간의효율적이고빠른데이터교환을
가능하게한다.
네트워크 랙에 스위칭 인프라를 집중적으로 배치하는 이유로는 케이블 관리를 용이하게 하고 네트워크 지연을
감소시키며, 컴퓨트 랙을 추가하거나 확장할 때 유연성을 확보하기 위해서이다. 이렇게 구성된 집계 스위치 기반의
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네트워크랙구조는데이터센터의운영효율성과확장성을확보하는데효과적으로알려져있다.
이러한열단위의통신구조는이제까지노드라는유닛과랙이라는유닛을통다중가속기시스템규모를확장하여
데이터센터를 구성하는 데 많은 도움이 되었다. 하지만 LLM과 같은 큰 모델과 데이터를 처리하는 데 있어서 최근
운영 환경에서는 GPU 간 고속 동기화 등에 다양한 구조적 한계를 만들어내고 있다. 특히, 앞서 언급된 GPU 간
빈번한 동기화 요구로 인해 GPU 활용률이 크게 저하될 수 있으며, 이에 따라 열 수준에서의 전략적 인프라 설계를
대규모 AI 워크로드의 안정성과 성능을 보장할 수 있도록 더욱 효율적으로 할 필요가 있다. 본 기술 보고서에서는
현재스케일아웃구조로관리되고있는열내부와열간통신모두의중요성을강조하며, 향후 스케일업구조를통해
이를더개선할가능성을함께제시하고자한다.

본기술보고서는현재 AI 인프라에서스케일아웃방식으로관리되는열내부및열간
통신의중요성을강조하며, 향후 이러한구조를스케일업방식으로전환함으로써

추가적인성능향상이가능함을제시한다.

한편, 데이터센터 인프라 확장에서는 열 수준에서 층 수준으로의 전환이 핵심적 단계이다. 열 내부의 최적화는 층
단위아키텍처로자연스럽게연결되어야한다. 일반적으로층수준아키텍처는여러개의열을그리드(Grid) 형태로
연결하여 공간 효율성과 열 간 효율적 통신을 동시에 달성할 수 있도록 설계된다 [256, 290]. 구체적으로, 하나의
층은 보통 20개에서 30개의 랙으로 구성된 여러 열을 포함하며, 이는 전체적으로 수백 개의 랙을 통합 관리하는
규모로 확장된다. 그림 19b는 이러한 층 단위 구성을 시각적으로 나타낸 것으로, 열 간 상호 연결 구조를 강조하며
효율적데이터흐름과자원공유를가능하게하는배치의예를보여준다.
이 정도의 규모에서는물리적공간구성, 효율적인 열 간 네트워크연결, 그리고 인프라의 전반적인체계적관리가
매우 중요하다. 또한, 사용되는 인터커넥트 및 네트워크 기술의 특성에 따라 스케일업 및 스케일아웃 도메인의 설계
고려도함께이루어져야한다. 데이터센터의하드웨어구성특성상열간(Inter-Row) 및 열 내(Intra-Row) 통신은
필수적이며빈번하게발생하는데이는GPU및기타가속기의병렬처리동기화나메모리접근시필요한데이터교환
등이 주로 열 단위 내에서 이루어지기 때문이다. 그러나 현재는 대부분의 이러한 열 단위 통신이 스케일업이 아닌
스케일아웃 도메인을 통해 이루어져, 데이터 이동 시 상대적으로 높은 비용을 유발하고 있다. 우리는 향후 스케일업
아키텍처의개선을통해열내및열간연결을저지연고속통신이가능하게하는다양한전략을논의할것이다.
이와 더불어, 고밀도 컴퓨팅 노드에서발생하는열을효과적으로관리하기위한고급열관리및전력분배솔루션
역시 중요하다. 예컨대, 액체 냉각 분배 장치(Liquid-Cooling Distribution Units [291, 292])나 전력 분배 장치
(Power Distribution Units [260, 293, 294])는 효과적인 열 분산을 통해 시스템의 안정적인 운영 환경을 유지
하고 성능 저하를 방지하는 데 결정적인 역할을 한다. 이러한 설계 전략은 궁극적으로 대규모 AI 인프라의 신뢰성과
효율성을확보하기위한필수요소중하나이다.

건물수준의통합: AI 인프라구성에서캠퍼스규모로의확장. 그림 20a에서 나타낸 것처럼, 건물 수준(Building-
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(a)건물수준구성. (b)데이터센터의다단계스파인-리프토폴로지.

|그림 20| 건물수준구성과전체데이터센터토폴로지.

Level)의 통합은 계층적 데이터센터 아키텍처에서 최상위 계층을 구성하며, 여러 층을 상호 연결하여 수천에서
수만 대에 달하는 GPU 자원을 하나의 대규모 AI 인프라로 통합하는 것을 의미한다. 각 층은 다시 여러 열과 랙으로
구성되고, 이들 계층은하나의통합된데이터센터시스템으로운영된다.
이러한 대규모 연산 환경에서는 정말 많은 수의 GPU가 여러 층에 걸쳐 배치되므로, 자원 할당의 일관성, 데이터
이동, 네트워크 조정과 같은 복잡한 운영 과제가 동반된다. 예컨대 현대의 대규모 배치에서는 여러 층에 위치한
GPU 클러스터를 장거리 네트워크 기술로 연결함으로써 건물 전체 수준에서 GPU 자원을 논리적으로 통합하고
있다 [295–297].
그러나건물단위로인프라를확장하면, 하위계층(노드, 랙, 열)에서는발생하지않았던새로운문제들이발생한다.
구체적으로, 층 간 통신으로 인해 새로운 형태의 네트워크 지연과 혼잡(Congestion)이 증가하며, 이는 GPU의
실질적인 활용률을 이론적 최대치의 절반 수준으로 제한하는 경우가 많다 [34, 255, 298]. 따라서 일반적으로
건물 수준의 통합에서는 다단계(Multi-Tier) 스파인-리프 또는 다단계 팻트리(Fat-Tree) 아키텍처와 같은 계층형
네트워크 토폴로지를 채택하여 통신 부하를 분산하고, 지연을 완화하며, 혼잡을 효과적으로 관리한다(그림 20b
참조).
이와 동시에, 전력 분배, 열 환경 제어(Thermal Regulation), 장애 허용성(Fault Tolerance) 등의 운영 문제도
규모가 커짐에 따라 다른 양상으로 발현하여 데이터센터 운영의 복잡성을 더욱 증가시킨다 [299, 300]. 이러한
문제들을완화하기위해서는계산부하, 네트워크상태, 열분산상태, 하드웨어상태등에대한실시간시각화와이를
기반으로하는자동화된모니터링및중앙집중형자원관리시스템이필요하다.
그러나 이와 같은구체적운영전략에도불구하고 GPU 간 동기화 오버헤드와계층간대용량데이터이동과같은
본질적인통신병목구조는여전히피할수없는구조적제약으로남아있다. 이러한통신병목은결과적으로시스템의
확장성과 효율성을 근본적으로 제한하게 되며, 이를 해결하기 위해 기존과 다른 형태의 인터커넥트 아키텍처와
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(a)하이퍼스케일러별미국내데이터센터면적. (b)하이퍼스케일러별전체데이터센터수.

|그림 21| 하이퍼스케일러의데이터센터규모.

컴포저블시스템설계가요구된다. 이에 대해서는이후섹션에서보다자세히다룰예정이다.
또한, 여러 건물 단위의 구조물이결합하면하나의 캠퍼스규모인프라(Campus-Scale Infrastructure)를 형성
하게 되며, 이는 대규모 데이터센터 배치를 가능하게 한다. 그림 21a와 21b는 마이크로소프트(Microsoft), 메타
(Meta), 구글(Google), 아마존(Amazon) 등 주요 하이퍼스케일러(Hyperscaler)가 구축한데이터센터의규모와
수량을 시각적으로 나타낸다. 이들 기업은 AI 인프라 수요의 급증에 대응하기 위해 데이터센터를 빠르게 확장하고
있으며, 이러한확장은설계방식과운영구조전반에영향을주고있다.
그림 21a는 미국 내에서 운영 중이거나 2027년까지 완공이 예정된 각 기업의 데이터센터 부지 면적을 보여준다
[301]. 그림 21b는 각 기업이자체기준에따라정의한데이터센터의개수를비교한것이다 [302–306].
기업별 인프라 규모는 다음과 같다. 메타의 데이터센터 전체 부지 면적은 약 4,200만 m2로, 이는 표준 축구장
약 5,300개에 해당한다. 마이크로소프트는 전 세계적으로 약 400개의 데이터센터를 운영 중이며, 아마존(AWS)
와 구글은 각각 200∼300개 사이의 시설을 보유하고 있다. 메타는 약 30개 수준의 센터만 운영하지만, 각 시설의
면적이 매우 넓어 전체 부지 규모는 타 기업들과 유사한 수준이다. 메타의 인프라는 대규모 고밀도 구조를 기반으로
하며, 용량 확보와 운영 효율을 우선시하는 방향으로 설계되어 있다. 이러한 차이는 각 기업이 채택한 인프라 확장
전략의방향성을보여주며, 결과적으로데이터센터의설계복잡성과자원활용효율성에영향을미친다. 참고로국내
에 전역에 수십개의 클러스터가 데이터센터가 전역에 등록되어 있지만, 세종에 네이버가 AI용 하이퍼스케일용으로
인프라를구축하고있는것의부지면적이약 294천m2(축구장 41개)것을 고려해보면현재국내인프라는아직그
규모가매우작은수준임을알수있다.
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3.4. GPU 중심 AI 인프라가가진제약과도전과제

연산을넘어선한계: GPU병렬화가근본적으로직면한제약들. 지금까지노드단위에서건물규모까지확장가능한
블랙웰기반계층형데이터센터아키텍처를통해수천에서수만개의GPU를통합하는구조적확장성을살펴보았다.
그러나 이 같은 아키텍처적 확장성에도 불구하고, GPU는 여전히 메모리 제한과 필연적인 통신 오버헤드로 인해
완벽한연산병렬화가불가능하다.
앞서 논의한 바와 같이, 현대의 LLM 워크로드는 어텐션메커니즘에서생성되는대규모중간상태(Intermediate
State), 활성화값, 그리고 모델 파라미터의 규모로 인해 그 데이터 사이즈가 단일 GPU의 메모리가 수용할 수 있는
용량을가뿐히넘어선다. 따라서다수의 GPU에걸친분산연산(Partitioning)이 필수적이지만, 이러한병렬화과정
에서는 GPU 간의 동기화 및 통신 오버헤드, 그리고 운영의 복잡성과 같은 중요한 성능 트레이드오프가 필연적으로
발생한다.
예를들어,모델병렬화(Model Parallelism)는모델파라미터를여러GPU에분산하여메모리용량부족문제를해
결할수있지만, GPU간빈번한동기화과정에서큰오버헤드를발생시킨다. 반면데이터병렬화(Data Parallelism)
는 각 GPU에 모델을 복제하고 배치 단위의 병렬 처리를 수행하지만, All-Reduce와 같은 집합 동기화 연산 때문에
GPU 활용률이이론적으로최대 35–40% 수준에머무른다 [307–312].
앞서논의되었듯이파이프라인병렬화의경우모델을여러GPU에계층적으로분할하여처리함으로써더큰모델을
처리할수있지만, 계층간데이터전송과정에서발생하는파이프라인버블로인해GPU유휴시간이나타나며, GPU
활용률이약50%수준으로제한된다 [28, 45, 170, 207, 313]. 이러한한계를극복하기위한다양한병렬화기법을
결합한 하이브리드 병렬화(Hybrid Parallelism) 방식도 제안되었으나, 다중 GPU 환경에서 나타나는 본질적 통신
오버헤드를근본적으로해소하지는못하고있다.
중요한 점은 이러한 구조적 병목이 최신 하드웨어 아키텍처의 발전에도 불구하고 여전히 존재한다는 것이다. 고
대역폭 NVLink 연결 기술, 확장된 HBM3e의 메모리 용량, 통합형 CPU-GPU 모듈 설계와 같은 하드웨어 혁신은
부분적으로 통신 지연을 완화하고 전체 처리량을 증가시킬 수 있지만, 근본적인 동기화 오버헤드와 메모리 관리의
복잡성문제는여전히미해결과제로남아있다. 결국, GPU 병렬화기법이본질적으로가지고있는통신오버헤드와
동기화 요구라는 구조적 제약은, 대규모 AI 인프라의 최적화와 아키텍처 발전을 위해 반드시 해결되어야 할 핵심
과제이다.

GPU 병렬화기법이가진통신오버헤드와동기화요구라는구조적제약은대규모 AI
인프라의성능최적화와아키텍처발전을위해반드시해결되어야한다.

자원통합방식의재고: 대규모환경에서의CPU-GPU통합아키텍처의한계. 블랙웰아키텍처와같은CPU-GPU
통합 모듈은 특정 연산이 집중된 워크로드에서 우수한 성능을 제공하도록 설계되었으나, 이러한 모듈을 수천에서
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수만 개의 노드를 갖춘 대규모 데이터센터 전반에 배치할 경우, 확장성, 유연성, 운영 효율성 면에서 명확한 구조적
제약을드러낸다.
무엇보다도통합모듈은연산, 네트워크, 메모리자원간에끊어낼수없는결합성이근본적으로존재하므로(Rigid
Resource Coupling), 각 자원을 독립적으로 확장하는 데 필요한 유연성이 심각히 제한된다. 대규모 AI 환경에
서는 이와 같은 결합 구조가 두 가지 근본적인 문제를 더욱 심화시킨다. 첫째, 노드 간 통신 오버헤드(Inter-Node
Communication Overhead)의 선형적 증가이다. 각 CPU-GPU 노드는 다른 노드와의 데이터 교환 및 동기화를
위해 별도의 네트워크 연결을 필요로 하므로, 전체 네트워크 토폴로지가 복잡해지고 GPU 간 지연과 동기화 시간이
심각히늘어나게된다. 결과적으로 LLM의학습및추론과같은통신중심워크로드에서성능저하가발생할수밖에
없다.
둘째, 고정된 CPU:GPU 비율(예: GB200/300의경우 1 CPU : 2 GPU)은인프라규모가커질수록CPU자원의
과도한 프로비저닝(Over-Provisioning)을 초래하는 비효율성을 낳게 된다. 현재 LLM 구조상 연산의 대부분이
GPU 중심으로 이루어짐에 따라, CPU는 상대적으로 유휴 상태로 남는 시간이 많아져 자원이 낭비되고 비용이
자연스럽게 상승할 수 밖에 없다. 이와 함께, 각 노드에 물리적으로 고정된 메모리 바인딩(Binding)은, 메모리 그
자체만으로확장하기어려우므로노드를추가하면메모리용량도어쩔수없이비례적으로증가해야한다. 이는특정
워크로드에서는메모리의낭비를야기하고, 다른경우에는메모리가부족하여모델크기나배치사이즈(Batch Size)
를 제한하는상황을만들게된다.
마지막으로, CPU-GPU 통합 모듈은 유지보수 및 업그레이드 과정에서 심각한 제약을 일으킨다. 모듈 내 하나의
구성요소에결함이발생하면전체모듈을교체해야하므로, 시스템다운타임(Downtime)과 운영비용이증가한다.
또한 CPU와 GPU를 개별적으로 업그레이드하는 것이 어렵기 때문에, 최신 기술 진보를 신속히 반영하기 힘들고,
이는 시스템민첩성(Agility)과 현대화속도를떨어뜨린다.

NVIDIA의 블랙웰아키텍처와같은 CPU-GPU 통합모듈의구조적 ·운영적제약은 AI
인프라에서 CPU, GPU, 메모리, 네트워크자원을모듈형으로, 그리고독립적으로

확장할수있는구조로재설계하고적용해야함을보여준다

이러한 구조적 ·운영적 제약은 CPU-GPU 통합 모듈이 대규모 AI 인프라의 유연하고 확장 가능한 자원 요구를
충족하는데본질적인한계를가지고있음을명확히보여준다. 따라서이러한병목을해결하기위해향후데이터센터
아키텍처는CPU, GPU, 메모리, 네트워크자원을모듈형으로, 그리고독립적으로확장할수있는구조로재설계되어
야한다. 자원을분리하여구성하는접근방식만이대규모인프라환경에서확장성, 운영유연성, 자원활용최적화를
동시에달성할수있는실질적인해결책이될것이다 [251–254, 314].
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4. 다양한 성능 지표 최적화를 위한 CXL 기반 모
듈형아키텍처

현대의 AI 인프라가 동시에 고려해야 하는 성능 지표를 그림 22에 나타내었다. 여기에는 연산 처리량(Compu-
tational Throughput), 모델 크기(Model Size), 메모리 대역폭(Memory Bandwidth), 메모리 용량(Memory
Capacity), 네트워크 대역폭(Network Bandwidth), 지연 민감도(Latency Sensitivity), 전체 시스템 확장성
(System Scalability)이포함된다. 이러한성능지표의상대적중요도는서비스시나리오마다다르게나타나기때문

|그림 22| 서비스시나리오별성능지표의상대적중요도.
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에, AI 인프라에대한구체적인요구사항은워크로드특성에따라동적으로변화할수있음을알수있다 [315–319].
본절에서는LLM학습 [7, 8, 320], LLM추론단계의 “사전채움(Prefill)” 및디코딩(Decode) [159, 321, 322],
RAG 워크로드 [64, 323, 324]와 같이서로구별되는 AI 워크로드시나리오를앞서언급한성능지표중서로다른
조합으로표현해보고그이유를분석해본다. 이러한분석은단일아키텍처구성이모든서비스시나리오에서요구하는
다양한 성능 지표를 동시에 최적화할 수 없다는 점을 보여줄 것이다. 이와 같이 다차원적이며 지속적으로 진화하는
성능요구들을해결하려면, 연산, 메모리, 네트워크 등주요자원을독립적으로확장가능한모듈형컴포저블아키텍
처가필수적이다.
본 보고서는 컴퓨트 익스프레스 링크(CXL, Compute Express Link)를 통해 이러한 문제를 효과적으로 해결할
수있음을다방면으로분석하고보여주고자한다. 기본적으로CXL은자원의물리적분리(Disaggregation)와 동적
재구성(Dynamic Composability)을 지원하여, 각 AI 워크로드 특성에 맞추어 인프라 자원을 유연하게 구성하고
효율적으로확장할수있다.
이 섹션에서는 우선 현대 AI 인프라가 직면한 다양한 성능 요구사항과 관련된 근본적 도전 과제들을 논의한다.
이어서CXL사양의발전과배경지식, 그리고그아키텍처적의미를분석하며, 이를통해다양한AI 워크로드의요구를
만족시키는 방법을 살펴본다. 마지막으로, 여러 워크로드 시나리오에서 성능 지표를 동시에 최적화할 수 있도록
설계한 CXL 기반의트레이디자인과랙아키텍처를제안한다.

4.1. AI 워크로드특성에따른성능지표분류및기존아키텍처의한계
현대 AI 인프라가 동시에 충족해야 하는 일곱 가지 성능 지표를 명확히 이해하기 위해, 우리는 각 지표에 영향을
미치는 요소들을 기계학습 워크로드 특성에 따라 (1) 연산 처리량, (2) 메모리 용량 및 대역폭, (3) 네트워크 통신,
그리고 (4) 지연 민감성 등 네 가지 주요 그룹으로 나누어 분류하였다. 본 절에서는 각 그룹이 기계학습 워크로드를
실행하는데있어서왜중요한지알아보고, 기존의데이터센터아키텍처와인프라가이처럼서로밀접히연결된여러
성능지표들을동시에최적화하기어려운이유에대해분석해본다.

AI 인프라에서는실행응용과워크로드에따라서요구하는지표가모두달라지기때문에
하나의도메인특화장치나가속기설계로이를모두만족하기어렵다.

연산 처리량(Computational throughput). LLM은 충분한 표현력과 우수한 일반화 성능을 확보하기 위해
수백억에서 수천억 개의 파라미터로 이루어진 매우 큰 모델 크기를 요구한다. 특히 이러한 대규모 모델은 작은
규모의 모델이 얻기 어려운 복잡한 언어 관계와 미묘한 문맥적 차이를 효과적으로 포착할 수 있으며, 이를 통해
고급추론(Advanced Reasoning)과 향상된문맥이해(Improved Context Comprehension)와 같은이머전트
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(a)성능지표간상충관계. (b)성능지표간상충예시.

|그림 23| 성능지표간상충관계와그예시.

(Emergent) 능력을 나타낸다. 예를 들어 MoE 구조를 채택한 모델은 각 입력 토큰에 따라 특정 전문가 네트워크를
선택적으로활성화하여파라미터수를종종수조개수준으로까지증가시키고, 모델의용량과성능을크게향상한다.
이러한이유로방대한파라미터집합을현실적인시간내에처리하기위해서는연산처리량이매우중요하고,이러한
높은 연산 처리량을얻기 위해서는 수천 개 이상의 GPU를 이용한 병렬 처리가 필수적이다. 그러나 앞서 3.4절에서
논의된 것처럼, 대규모 GPU 클러스터 운영 시 발생하는 빈번한 동기화 이벤트는 근본적으로 제거될 수 없다. 특히
그래디언트집계및MoE구조특유의전문가네트워크활성화등을수행하는데발생하는집합적연산과정에서GPU
간높은빈도의동기화가필요하다. 이러한집약적인집합통신패턴은네트워크대역폭수요를크게증가시켜필연적
으로성능병목을초래한다. 결과적으로동기화로인한오버헤드와네트워크혼잡으로인해실제GPU활용률은이론
적으로달성가능한최대성능의절반에도미치지못하는수준에그친다 [28, 99, 100, 170, 207, 309, 325, 326].

메모리용량과 대역폭(Memory capacity and bandwidth). 메모리 용량과 대역폭 또한 연산 처리량 못지않
게 중요한 그룹 요소이자 병목 요인이다. 최근의 대규모 LLM은 모델 파라미터 및 중간 활성화값(Intermediate
Activation)의 수가 수백억에서 수천억 개 규모로 증가하면서, 학습 과정에서 필요한 메모리 용량이 수백 테라바이
트를 넘어섰다. 실제 학습 환경에서는 모델 파라미터뿐 아니라 이러한 중간 활성화값, 옵티마이저 상태(Optimizer
State), 그래디언트버퍼(Gradient Buffer), 그리고메타데이터(Metadata) 등도동시에메모리에적재해야하므로
총메모리요구량은더욱증가한다 [24, 25, 327].
LLM의방대한메모리요구량은현재아키텍처에서GPU당제공하는로컬메모리용량(최대수백GB수준)을훨씬
초과한다. 따라서CPU와GPU가고정된메모리구성으로밀접히결합된기존아키텍처는메모리자원을독립적으로
확장하는 데 유연성이 부족하여 수백 테라바이트 이상의 대규모 메모리 요구사항을 효과적으로 수용하기 어렵다.
또한 키-값 캐싱 및 RAG와 같이 메모리를 집중적으로 사용하는 최적화 기법들은 대규모 메모리 트랜잭션을 자주
유발하여메모리대역폭제약을더욱심화시킨다. 따라서연산처리량중심의기존아키텍처는고대역폭의지속적인

본한글보고서는다양한독자들의이해를돕기위한목적으로직 ·번역된것으로, 정확한내용은원문기술보고서를참고하시기바랍니다.

본 문서에포함된콘텐츠는다수의특허및저작권법을통해보호받고있습니다.

42



파네시아기술리포트

메모리트래픽을효율적으로지원하지못해, 성능 저하를초래하는한계를보인다.

네트워크통신(Network communication). 효율적인 네트워크 통신은 워크로드가 여러 노드에 걸쳐 분산되는
환경에서필수적이며, 효과적인병렬화전략이필요하다. 기존의밀접히결합되는아키텍처는주로노드내부(Intra-
Node) 및 랙 내부(Intra-Rack) 연산 성능 최적화에집중하는반면, 노드 간(Inter-Node)과 랙 간(Inter-Rack)의
대규모통신요구를충분히고려하지않는경향이있다.
병렬화범위가여러노드로확장될경우, 노드간통신빈도와데이터크기는급격히증가하여, 실제GPU내데이터
크기보다수배에서수십배큰데이터가교환될수있다. 특히, 대규모 LLM학습과정에서는반복마다GPU들이중간
활성화값, 옵티마이저 상태, 그래디언트 업데이트 등 수백 TB 규모의 데이터를 관리한다. 어텐션 벡터, 그래디언트,
KV 캐시의 빈번한 동기화로 인한 GPU 간 통신량은 페타바이트(PB) 수준까지 증가하여, 랙 단위에 존재하는 모든
GPU의 메모리수용량을넘어서는규모가되기도한다.
이러한 LLM의 대규모화는, 기존 서비스와달리데이터센터아키텍처의네트워크병목현상을심각히가속화하였
으며, GPU 간 효율적인 동기화를 저해하고 데이터센터 수준의 모델 확장을 어렵게 하고 있다. 결론적으로 이러한
통신오버헤드와도전과제는확장가능한고대역폭 ·저지연인터커넥트인프라의중요성을다시한번강조한다.

지연 민감도(Latency sensitivity). 지연 민감도는 추론 과정에 전반적으로 중요하지만 특히 오토레그레시브
추론과정의디코딩단계에서핵심설계요소이다.
실시간 AI 워크로드는 GPU 간 중간연산결과의빠르고정확한동기화를통한즉각적인응답을요구한다. 그러나
기존인프라구조는노드간의빈번한데이터이동과이더넷(Ethernet)이나인피니밴드(InfiniBand) 같은네트워크
기반 통신 기술에서 발생하는 소프트웨어 오버헤드로 인해 상당한 지연을 초래한다. 구체적으로 운영체제상의
권한 모드 전환(커널 모드와 유저 모드 간 전환), 불필요한 메모리 복사, 인터럽트 처리 및 프로토콜 처리 등과 같은
소프트웨어 간섭과 불필요한 프로세스가 높은 지연을 유발한다. 이러한 네트워크 오버헤드는 CXL이나 UALink와
같이 소프트웨어 개입이 없는 하드웨어 인터커넥트에 비해 수십에서 수백 배 높은 지연을 초래하여, 시스템 성능과
확장성을 크게 제한한다. 결과적으로 기존 아키텍처는 실시간 응답 요구를 충족하지 못하며, 지연에 민감한 AI 추론
작업의활용성을제한하게된다.
앞서언급한네가지성능지표, 즉 연산처리량, 메모리용량및대역폭, 네트워크통신, 지연민감성은서로상충하
여 동시에 최적화하기 어렵다(그림 23a 참조). 예를 들어, 그림 23b에 보여지듯, GPU 병렬화를 통한 연산 처리량
증가는 네트워크 대역폭 수요를 증가시키고, 동기화 오버헤드를 높인다. 대규모 파라미터와 활성화 데이터를 위한
메모리확장역시노드간의빈번한캐시일관성데이터교환을초래하여지연과복잡성을증가시킨다. 따라서 CPU
와 GPU를 밀접하게 결합한 기존 아키텍처는 개별적인 자원 확장 유연성이 부족하여 자원 활용의 비효율성과 성능
제한을초래할수밖에없다.
이러한 구조적 한계를 극복하기 위해, 차세대 AI 데이터센터는 연산, 메모리, 네트워크 자원을 독립적으로 모듈화
하고, 개별적으로 확장 가능한 컴포저블 아키텍처를 채택해야 한다. 이러한 맥락에서 자원 분리, 동적 조합 가능성,
일관성보장메모리풀과같은고급기능을제공하는 CXL이 현실적인대안으로부상하고있다. 특히 CXL은 메모리
자원을물리적으로연산장치에서분리시키는동시에캐시일관성을유지하고지연과동기화오버헤드를낮추어전체
시스템의효율성을향상시킬수있다.
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|그림 24| CXL 기반의 CPU와 메모리컨트롤러분리구조.

4.2. 컴포저블아키텍처의진화: CXL 기술의발전

CPU로부터 메모리 자원의 분리: CXL 1.0. 앞서 논의한 확장성, 유연성 및 성능 문제를 해결하기 위해, CXL의
다양한인터커넥트특성을고려하여데이터센터의아키텍처를재구성할수있다. 전통적인컴퓨터구조에서는메모리
컨트롤러가 CPU 패키지 내부에 긴밀히 통합되어 있어, 메모리 용량의 확장이나 메모리 자원의 물리적 분리가 거의
불가능하였다. 동적으로 변하는 워크로드의 입출력 데이터 크기 및 패턴을 효과적으로 수용하고, 노드 간 불균형한
메모리자원의활용도를높이며, TCO를 감소시키기위해 CPU와 메모리자원의물리적분리는필수적이다. 그러나
기존컴퓨터구조의한계로인해지금까지데이터센터는주로 RDMA 기술을활용하여메모리를논리적으로만분리
하고, 소프트웨어의 지원을 받아 여러 연산장치들이 공유하는 방식을 채택해왔다 [79, 328–331]. 이러한 RDMA
방식은하드웨어구조상유연성은제공하지만, 운영체제권한모드전환, 데이터직렬화및역직렬화, 불필요한메모리
복사와같은소프트웨어오버헤드가불가피하여성능열화가크고,추가적인데이터이동과관리로인해에너지소모가
심각하다는단점을갖는다.
CXL의 프로토콜 인터페이스는 메모리 컨트롤러를 CPU로부터 물리적 및 논리적으로 완전히 분리할 수 있도록
하여 기존 컴퓨터 구조를 보완하기 위한 RDMA나 다른 기타 소프트웨어 방식의 근본적인 문제를 직접 해결하였다.
그림 24에 나타난 것처럼, CXL은 메모리 컨트롤러를 CPU 패키지 내부가 아닌 외부 메모리 모듈에 배치하여, 이를
엔드포인트(Endpoint)라 불리는 DRAM 확장 카드나 특수 메모리 장치 형태로 구현할 수 있도록 하였다. CXL
프로토콜의특성으로인한하드웨어구조적변화가능성때문에메모리자원은전통적인 CPU의제약에서벗어나독
립적이고조합가능한형태로메모리자원분리가가능해졌다. 특히 CXL은기존 PCI 익스프레스(PCIe, Peripheral
Component Interconnect Express)의 물리계층을유지하면서, CPU의표준적인로드/스토어명령을통해접근
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|표 1| CXL 버전별비교분석.

기능 CXL 1.0 CXL 2.0 CXL 3.0
최대링크속도 (GTs) 32 32 64
68바이트플릿 (up to 32 GTs) ✓ ✓ ✓
256바이트플릿 (up to 64 GTs) – – ✓
메모리컨트롤러분리 ✓ ✓ ✓
메모리확장 ✓ ✓ ✓
메모리풀링 – ✓ ✓
메모리공유 – – ✓
단일계층스위칭 – ✓ ✓
다단계스위칭 – – ✓
계층기반라우팅 (HBR) – ✓ ✓
포트기반라우팅 (PBR) – – ✓
핫플러그지원 – ✓ ✓
루트포트당최대가속기수 1 1 256
루트 포트당최대메모리확장장치수 1 256 4096
백-인밸리데이션 – – ✓
점대점(P2P, Peer-to-Peer) 통신 – – ✓
출시연도 2019 2020 2022-23

가능하고 캐시일관성이보장되는메모리인터페이스를제공한다. 이를 통해 컨텍스트스위칭이나 불필요한 메모리
복사같은소프트웨어오버헤드를제거하고, 하드웨어수준에서직접적인메모리접근경로를확보하여외부메모리
확장치에 대한 지연 시간을 RDMA 등에 비해 현저히 단축한다. 또한, CXL은 기존 PCIe 인프라에 링크 계층과
트랜잭션 계층과 같은 새로운 논리 계층을 추가로 구현하여, 기존 하드웨어 생태계에 별도의 수정 없이 쉽게 통합할
수있도록설계되었다.
표 1에서는 CXL 1.0, 2.0 및 3.0의 주요 기능을 비교하고, 각 버전에서의 확장성, 연결성 및 고급 기능의 점진적
발전 과정을 정리하였다. 최초의 CXL 1.0 [54] 사양은 메모리 컨트롤러 분리의 핵심 개념을 처음으로 제안하여
조합가능한인프라구축의기반프레임워크를제공하였다. 그러나실제구현에서 CXL 1.0의 확장성은여전히노드
내부로제한되었다. 각 CXL엔드포인트에있는외부메모리컨트롤러는신호무결성(Signal Integrity) 및신호감쇠
(Signal Attenuation) 같은물리적한계 [332, 333]와제한된메모리채널수로인해, 보통엔드포인트당최대 1TB
에서 2TB수준의메모리용량만제공할수있다. 노드내부에적용할수있는엔드포인트의수는물리적으로한정되어
있으므로 보다 광범위하고 효율적인 메모리 자원의 분리를 실현하기 위해서는 추가적인 구조적 개선이 필요했고,
이는 이후등장한 CXL 2.0 등 후속버전개발의필요성을촉진하였다.

스위치 기반 아키텍처를 통한 확장 가능한 컴포저블 메모리: CXL 2.0. 메모리 용량, 엔드포인트 확장성, 그리고
물리적으로고정된연결방식과같은CXL 1.0의여러가지한계를극복하기위해CXL 2.0 [55]에서는전용스위치를
기반으로하는토폴로지를도입하였다. 기존CXL 1.0은엔드포인트와호스트간의직접연결을통해제한된확장성을
가졌던 반면, CXL 2.0에서는 중간에 스위치를 배치하여 다양한 메모리 자원을 더욱 유연하게 통합 및 관리할 수
있도록 하였다. 그림 25에서 나타낸 것과 같이, 컴퓨트 노드와 메모리 엔드포인트 간 스위칭 계층이 추가됨으로써,
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|그림 25| 직접연결에서다단계스위칭까지의 CXL 발전 과정.

호스트는다수의외부엔드포인트들로구성된, 확장성이높고더큰메모리풀에접근할수있게되었고, 기존점대점
(P2P, Point-to-Point) 연결 방식에서발생하던연결성병목을효과적으로해소할수있게되었다.
내부적으로 CXL 2.0 스위치는고대역폭의크로스바(Crossbar) 아키텍처를사용하여, 연결된여러엔드포인트와
컴퓨트노드간의일관된메모리트랜잭션(Transaction)을라우팅할수있다. 이러한하드웨어중심의메모리일관성
통신방식은대용량의외부메모리에접근하는데기존 RDMA 네트워크기반의연결방식에서나타났던소프트웨어
오버헤드를 제거하여 지연을 크게 감소시킨다. 또한, PCIe Gen5 기술(32 GT/s per lane)을 사용하는 CXL 2.0
스위치는 16레인(Lane) 기준 양방향 최대 64 GB/s의 대역폭을 제공한다. 결과적으로, 단일 CXL 2.0 스위치는
노드당수십TB이상의메모리를통합할수있고다수의노드를연결할수있으므로, 기존엔드포인트중심의CXL 1.0
설계가 갖는 확장성의 한계를 뛰어넘을 수 있다. 이와 같은 확장성이 높은 스위치 토폴로지는 모듈식 시스템 증설을
보장하며자원프로비저닝을단순화하고, 엔드포인트중심의제약에서메모리장치의할당을비교적자유롭게한다.
또한 CXL 2.0에서 새롭게 도입된 핫플러그(Hot-Plug [58]) 기능은 최소한의운영중단으로메모리엔드포인트를
동적으로추가하거나제거할수있도록지원한다. 호스트단위의정적메모리할당기능 [58, 60, 334] 역시변화하는
워크로드의요구사항에효율적으로대응하여데이터센터의운영유연성을높일수있게하여다양한방면에서 CXL
1.0보다 기술적우월성을확보하였다.

CXL 2.0은 단일계층스위치만을지원하여유연성과확장성이제약되며매우소수의
GPU나 가속기유형의장치만을연결할수있어서그한계가존재한다.
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그러나 이러한 개선에도 불구하고, CXL 2.0은 여전히 대규모 시스템 구축을 지원하는 데 제한 요소를 가지고
있다. 특히, 계층적다단계스위치(Hierarchical Multi-Level Switch) 구성을지원하지않아시스템의구성이단일
계층 스위치(Single-Layer Switch) 구조로 제한된다. 이는 메모리 풀의 규모와 루트 포트(Root Port)당 연결
가능한장치수를크게제한하는결과를가져왔다. 일반적으로 CPU는제한된수의루트포트를제공하며, 각 포트는
고정된 연결 방식과 엄격한대역폭제약을갖고 있다. 따라서 실제 환경에서는 CXL 2.0의 루트 포트당 메모리 확장
엔드포인트(Type 3 장치)는 보통 4개에서 16개 정도로 제한되었으며, 이론적으로 최대 수용가능한 256개 Type
3 장치와는상당한차이가있었다. 또한, 가속기(Type 1 및 2 장치)의 경우 캐시일관성을유지하기위해포트당한
개의장치만연결할수있기때문에배치의유연성과확장성이더욱제약되었다.
이러한 확장성의 제약은 이후의 CXL 3.0 사양에서 다단계 스위치 구성, 고급 라우팅 메커니즘 및 시스템 전반의
포괄적인메모리일관성유지와같은추가적인기술발전을만들어내는데중요한동기가되었다.

다단계스위칭과메모리공유를통한진정한컴포저블아키텍처: CXL3.0. CXL 3.0사양(Specification) [56]6은
기존 CXL 2.0이 가진확장성및계층적구성의한계를극복하기위해구조적으로많은변화를겪었다. 특히, 대규모
데이터센터와 고성능 컴퓨팅 환경에서의 진정한 컴포저블 아키텍처의 구성 및 자원 공유가 가능하도록 근본적인
설계 변화가 있었다. 기존의 CXL 2.0은 단일 계층의 스위치 토폴로지로 제한되어, 연결 가능한 엔드포인트의 수가
매우 제한적이었던 반면, CXL 3.0은 다단계 스위치 토폴로지인 “스위치 캐스케이딩(Cascading)”을 명시적으로
지원하여 인터커넥트로 패브릭을 구성, CXL 2.0이 가지고 있던 문제를 완전히 제거할 수 있게 하였다. 다시 말해
CXL 3.0은 여러 계층의 스위치를 상호 연결할 수 있고, CPU 루트 포트에서 일관성 있게 접근 가능한 엔드포인트
(메모리확장장치및가속기)의 수를대폭늘렸다.
구체적으로, CXL 3.0 프로토콜기술은CPU루트포트당최대4,096개의메모리확장장치(Type 3장치) 연결을
지원하여, 대규모 AI 및 데이터 분석 워크로드에서 요구되는 대형 메모리 풀의 구축을 가능하게 한다. 가속기(Type
1 및 Type 2 장치) 통합 능력 또한 향상되어, 루트 포트당 최대 256개의 가속기를 지원하며 기존의 단일 장치 연결
한계를 크게 뛰어넘는다. 이러한 CXL의 아키텍처적 개선은 이기종 가속기 클러스터의 동적이고 유연한 배치를
실현하여, AI 인프라의효율성을최적화하고변화하는워크로드의사용자요구사항에신속히대응할수있게한다.
CXL 3.0의 다단계스위치패브릭은이전CXL이사용하던계층기반라우팅(HBR, Hierarchy-Based Routing)
을보완하기위해새롭게도입된포트기반라우팅(PBR, Port-Based Routing)을활용한다. 기존의HBR은계층적
으로고정된경로와정적메모리파티셔닝만제공하기때문에자원의동적공유가제한적일수밖에없었다. 이에비해
PBR은 실시간 포트 상태와 네트워크 혼잡도에 따라 동적으로 최적 경로를 선택할 수 있다. 따라서 여러 호스트가
메모리 자원을 동시에 접근하며 진정한 다중 호스트(Multi-Host) 메모리 공유를 지원할 수 있다. 이는 결과적으로
트래픽분산효과를높이고지연을낮추며, 통신병목현상을완화함으로써기존CXL 2.0의정적방식이가진한계를
효과적으로극복한다.
무엇보다, CXL 3.0은이러한고급PBR메커니즘을통해강력한다중호스트메모리공유와시스템전체의포괄적인
캐시 일관성을 제공한다. 이러한 아키텍처적 개선은 대규모 AI 워크로드에서 연산 효율성을 높이고, 전체 시스템의
지연과 오버헤드를 최소화할 수 있게 한다. 예를 들어, 가속기와 컴퓨트 노드는 임베딩 테이블, KV 캐시 및 중간
활성화와 같은 주요 데이터 구조를 중복된 데이터 전송이나 RDMA 또는 캐시 일관성을 보장하기 위한 프레임워크

6본절에서 CXL 3.0은 3.1, 3.2 등 이후모든 CXL 3.x 버전을포함하여지칭한다.
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등의복잡한소프트웨어의개입없이직접적이며일관성있게공유할수있다. 또한, 가속기내의로컬HBM을단일한
일관된메모리풀로통합할수있어시스템의메모리자원활용도를더욱높일수있다. 이와같은진정한메모리공유
방식이주는성능적이점과실질적의미는이후 5.2절에서자세히다룬다.

다단계스위치토폴로지를명시적으로지원하여인터커넥트패브릭구성이가능하며,
접근 가능한 CXL 장치 수를크게확장했다. 또한 다중호스트간소프트웨어개입없이

초고속데이터공유가가능하다.

CXL 3.0은앞서언급된상당한기술적개선에도불구하고CXL 2.0과하위호환성(Backward Compatibility)을
유지하여시스템확장성을최대화한다. 하지만실제시스템구현및배포시에는 CPU, 스위치, 엔드포인트장치에서
특정한 하드웨어 수정이 요구된다. 특히, PBR 메커니즘은 주로 스위치 내부에서 구현되나, 엔드포인트에서도 그에
상응하는 하드웨어 변화가 필수적이다. 예를 들어, 엔드포인트는 기존의 68바이트 “플릿(Flit)” 대신 256바이트
플릿을 처리할 수 있도록 설계되어야 한다. 또한 진정한 다중 호스트 메모리 공유와 캐시 일관성을 실현하기 위해,
메모리확장장치는 “백-인밸리데이션(Back-Invalidation)”과 같은고급일관성유지메커니즘을반드시구현해야
하며, 모든 공유 자원 간의 데이터 일관성과 무결성을 엄격히 보장해야 한다. 이 외에도 P2P 직접 통신과 같은 CXL
3.0의 새로운 기능을 통해 가속기는 호스트의 중재 없이 동일 도메인의 다른 가속기나 엔드포인트 메모리에 직접
접근할수있어야하며, 이러한기능을제공하는CXL 3.0 컨트롤러를기존가속하드웨어에적절히통합하여설계하고
구현해야 한다. CXL 3.0의 이러한 고급 기능 구현은 PBR 기반의 패브릭 아키텍처가 제공하는 확장성과 유연성을
극대화하고, 전체시스템의통신지연및오버헤드를최소화할수있도록지원하기때문에대규모 AI 인프라의효율적
확장을지원하기위해필수적으로적용될필요가있다.

4.3. CXL 기반의AI 데이터센터를위한모듈형트레이및랙아키텍처

CXL기술기반의모듈형트레이설계. 본절에서는 CXL 3.0에서도입된컴포저블아키텍처와다중호스트메모리
공유기능이실제현대 AI 데이터센터에서어떻게 “모듈형(Modular)” 및 “트레이기반(Tray-Based) 시스템설계”
를 가능하게하는지설명한다. 기존 방식에서는가속기, 메모리, CPU가 물리적으로밀접하게결합되어있어자원을
독립적으로확장하거나유연하게재구성하기어려웠다. 반면, CXL 기반의트레이방식시스템은엔드포인트가공간
적으로 분리된 배치 구성을 할 수 있기 때문에 가속기, CPU, 메모리와 같은 자원을 각기 별도의 트레이로 구성하여
독립적인 확장과 동적 재구성을 쉽게 만든다. 이를 통해 자원 관리가 단순해지고, 변화하는 AI 워크로드의 요구에
신속하게대응할수있도록구성할수있다.
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(a)분리형메모리트레이. (b)분리형가속기자원풀. (c)트레이-간 연결.

|그림 26| CXL의 캐시일관한공유특성을활용한트레이기반모듈형시스템.

그림 26a와같이, “메모리트레이”는전용CXL컨트롤러나CXL스위치를통해DRAM모듈만을모아서구성되며
이러한 트레이들을 다시 모아 하나의 큰 메모리 풀을 만들 수 있다. 각각의 메모리 트레이는 특정 CPU나 가속기
노드에 고정되지 않고, 여러 가속기나 CPU 트레이 간에 유연하게 할당되고 공유될 수 있다. 예를 들어, 대규모
트랜스포머 모델의 학습 단계에서 더 많은 메모리가 필요하면 CPU 설정을 변경하지 않고 추가 메모리 트레이를
가속기트레이에연결하여메모리를늘릴수있다.
자원을 독립적으로 분리하려는 시도는 이전에도 있었지만 [251–254], 기존 시스템에서는 실제로 자원을 완전히
분리하는 것이 어려웠다. 이전에는 CPU가 메모리 컨트롤러와 캐시 일관성을 직접 관리해야 했기 때문에 메모리와
가속기가 CPU에 의존적이었다. 하지만 CXL은 메모리 컨트롤러를 CPU 외부로 분리하고, 모든 구성 요소 간에
표준화된캐시일관성통신을지원함으로써이런한계를해결한다. 그 결과, 가속기가 CPU의개입없이직접메모리
자원을접근하는데이터를효율적으로공유할수있다.
이모듈형시스템에서, “전용가속기트레이”는여러GPU나NPU, 그리고도메인특화가속기를고속CXL 인터페
이스로연결하여구성된다. 그림 26b에 나타난바와같이, 표준화된 CXL 인터페이스를사용하면가속기들이 CPU
나 메모리 장치와 미리 할당되어 고정된 연결 없이도 하나의 통합된 자원 풀로 묶일 수 있다. 또한 각 가속기의 로컬
메모리를 하나의 공유 메모리 공간으로 통합하여 중복된 데이터 이동을 줄이고 성능을 높일 수 있다. 예를 들어 KV
캐시, 중간 활성화와 같은 자주 접근하는 데이터 구조와 동기화 이벤트들은 효율적으로 관리하여, 이로 인해 발생한
다양한오버헤드들을원천적으로제거할수있다.
한편, “컴퓨트트레이”는 CPU와필요에따라NIC만을포함하며, 로컬메모리는의도적으로제외하여자원의독립
성과다른자원과의조합을통한확장성을명확히제공한다. 여기에 추가로, 전용 CXL 스위치 트레이는 독립적으로
확장가능한컴퓨트, 메모리, 가속기트레이간의실시간자원할당과동적구성을조율한다.
이렇게 각 트레이가 특정 자원 유형만을 전담하도록 구성되면, CXL 기반 자원 분리의 이점을 최대한 활용하며
워크로드변화에따라컴퓨트, 메모리, 가속기등각자원은독립적으로확장및재구성할수있다. 이러한CXL기반의
모듈형 아키텍처는 자원 운영 효율성을 높이고 변화하는 AI 워크로드에 빠르게 대응할 수 있는 유연성을 제공하며,
이후 설명할랙수준의컴포저블아키텍처의기반이될수있다.

CXL 기반의 컴포저블 랙 아키텍처. CXL을 이용한 모듈형 트레이 기반 아키텍처가 랙 수준으로 확장될 때에는
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|그림 27| CXL 컴포저블랙아키텍처예시.

기능적으로명확하고자원의효율성을극대화할수있도록구성된다. 각각의랙은네트워크, 가속기, CPU, 컴포저블
메모리 확장 장치, 스토리지(Storage)와 같은 자원별로 전용 트레이들로 나뉘어 구성될 수 있다. 이를 통해 특정
응용프로그램이필요로하는자원을제공하기위해, 특화된랙들로구성하고연결하여, 컴포저블한열을형성하거나,
한 랙 내부에서다양한유형의트레이를필요에따라유연하게결합할수있다.
그림 26c는 CXL 기반 컴포저블 랙 아키텍처에서 모듈형 트레이들이 어떻게 연결되는지를 보여주는 대표적인
예시이다. 여기서는메모리트레이가랙의중심에서고속CXL스위치를통해관리되는대규모메모리풀을형성하며,
주변의가속기트레이와컴퓨트트레이가이메모리풀과연결되어있다. 이 방식으로 CPU의 직접적인개입없이도
메모리 자원을 효율적이고 신속하게 공유할 수 있어 중복된 데이터 이동을 최소화할 수 있다. 이는 특히 트랜스포머
모델의추론작업이나KV캐싱처럼자주쓰이는데이터를반복적으로활용하는워크로드에서성능개선효과가크다.
또 다른 구성사례로다양한 AI 워크로드에적합한컴포저블랙아키텍처의예를그림 27에서 보여준다. 여기서는
가속기트레이와메모리트레이가완전히분리되어있어, 각 트레이를필요에따라독립적으로확장하거나유연하게
자원을 재구성할 수 있다. 이 구성에서 또한 CXL을 통한 고속 캐시 일관성 통신을 활용하여 가속기 간의 효율적인
데이터공유가가능하고, 이를통해전체적인연산성능과자원활용도를높일수있다. 특히대규모 LLM학습과같이
메모리나연산요구가자주변화하는워크로드에서이런방식이매우효과적이다.
이러한모듈형아키텍처의또다른중요한장점은랙내부네트워킹및랙간네트워킹을최적화할수있다는것이다.
구체적으로, 기존의 데이터센터는 주로 각 랙 상단에 위치한 ToR 네트워크 스위치를 통해 랙 간 통신을 처리했기
때문에, 가속기간의고속통신이어렵고성능저하가발생하였다. 예를들어, 고속링크인UALink나 NVLink가없는
경우에는랙내부의통신조차장거리네트워크를통해처리해야했고, 이로인해성능이크게떨어졌다. 또한UALink
나 NVLink가지원되는경우에도, 랙내부의다른장비는여전히저속네트워크를써야했기때문에병목현상이자주
발생했다.
반면 CXL 기반의모듈형아키텍처는이러한문제를해결하기위해전통적인 ToR 스위치대신중앙에위치한전용
CXL 스위치 트레이를 사용하며, 이를 랙 중앙부(Middle-of-Rack, MoR)에 배치한다. 더 많은 대역폭이 필요할
경우 추가적인 CXL 스위치 트레이를 쉽게 추가하여 연결성을 강화할 수 있다. 이렇게 되면 랙과 열 내부가 통합된
고속인터커넥트만으로연결되는스케일업(Scale-up) 구성이 가능해진다. 반대로열간통신은기존의이더넷이나
인피니밴드와 같은 네트워크 장치를 이용하여 별도의 전용 네트워크 랙에서 처리한다. 이러한 구조는 네트워크의
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|표 2| CXL 적용 전후아키텍처성능비교.

현대AI 인프라의핵심성능지표 기존아키텍처 CXL 기반트레이아키텍처

확장성 자원확장이제한적인노드또는랙수준
스케일업

연산, 인터커넥트, 메모리자원의유연한확장을
가능하게하는열수준스케일업

지연 높은지연, RDMA로 인한프로토콜오버헤드및
소프트웨어개입 (1 µs 이상)

낮은 지연, 하드웨어기반프로토콜관리및캐시
일관성유지 (100–250 ns)

메모리용량 낮고고정됨, 밀접하게통합된 CPU와 GPU
아키텍처 (GPU당 192–288 GB)

막대하고유연함, 동적으로구성가능한메모리
풀 (노드당수십 TB 이상)

메모리대역폭 낮은효율 (외부 메모리접근시의메모리복사) 높은 효율 (일관성이보장되는풀링메모리를
통한트래픽감소)

연산 자원의유연성 낮은유연성 (고정적이거나큰단위의자원할당) 높은 유연성 (세밀한단위의동적자원할당)

혼잡을줄이고지연을최소화하여전체적인성능을향상시키며, AI 워크로드의요구를효율적으로만족시킬수있다.
운영 측면에서도 이트레이 기반 설계는유지보수및 업그레이드를 훨씬 쉽게만들어 준다. 메모리, 가속기, CPU,
네트워크 장비가 물리적 ·논리적으로 명확하게 분리되어 있기 때문에, 특정 자원을 교체하거나 확장할 때 전체 시
스템을 중단하지 않고도 개별 자원만 빠르게 교체하거나 추가할 수 있다. 이를 통해 시스템의 가동 중단 시간을
최소화하고, 신기술 도입을 용이하게 하며, 인프라가 빠르게 변화하는 워크로드 요구에 민첩하게 대응할 수 있도록
지원하여장기적으로비용효율성을높일수있다.

CXL 아키텍처를 통한 다양한 성능 지표 동시 충족 방안. 표 2에서는 CXL을 이용한 트레이 방식 아키텍처와 랙
구성이 현대 AI 인프라에서 요구하는 중요한 성능 요소들을 어떻게 효과적으로 충족하는지 분석한다. 이 모듈형
아키텍처는유연한자원배치와확장을가능하게하여연산의유연성을높이고, 메모리용량과대역폭을최적화하며,
지연을줄이고시스템전체의확장성을개선할수있다.
다음은 CXL 기반 아키텍처가 4.1절에서소개된각각의성능지표를만족시키는방식을더쉽게설명한것이다.

• 확장성(Scalability): CXL은여러단계의스위치를서로연결하여확장성있는구조를만든다. 이러한구조는
자원을추가할때병목현상이생기지않도록하며, 수천개의가속기와메모리를하나의통합된자원풀로묶을
수 있다. 이를 통해 시스템은 점점 커지는 AI 모델 크기와 병렬 워크로드를 효과적으로 지원하며, 추가적인
하드웨어변경없이도다양한 AI 요구에지속적으로대응할수있다.

• 지연(Latency): CXL은 메모리와 가속기 간에 직접적이고 캐시 일관성을 유지하는 통신 경로를 제공하여
지연문제를줄인다. 기존의네트워크기반방식(RDMA등)은소프트웨어처리가많아지연이컸지만, CXL은
하드웨어 기반으로 직접 메모리에 접근하기 때문에 지연을 크게 줄일 수 있다. 이러한 특징은 LLM 추론이나
디코딩처럼 빠른 응답이 중요한 작업에서 특히 유리하다. 데이터 접근에 있어 소프트웨어 개입을 없애고 각
연산장치의온칩(On-Chip) 캐시를 사용하기때문에시스템전반의성능과효율성을높일수있다.

• 메모리용량및대역폭(Memory capacity and bandwidth): CXL기반메모리트레이는여러개의메모리
모듈을 한데 묶어, 높은 용량과 대역폭을 제공한다. 각 메모리 모듈은 전용 CXL 컨트롤러나 스위치를 통해
연결 및 확장되며, 가속기가 이 메모리 풀에 직접 접근하여 메모리 용량 부족이나 데이터 이동 문제를 해소할
수 있다. 특히 CXL의 캐시 일관성 기능(CXL.cache)을 활용하면 메모리를 공유하는 가속기 간 캐시 상태가
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동일하게 되어 불필요한 데이터 전송과 메모리 접근을 줄일 수 있다. 이러한 특성을 이용하면 RAG나 KV
캐싱처럼데이터접근이많은작업에서성능이크게향상된다.

• 연산자원의유연성(Computational flexibility): CXL 기반 트레이아키텍처는다양한자원(가속기, 메모
리, CPU)을독립적으로조합하고변경할수있게한다. 이를통해워크로드의특성에따라필요한자원을비용
효율적으로확장하거나정밀하게구성할수있다. 예를 들어, GPU 트레이는연산이많은학습단계나프리필
단계에서 추가로 확장될 수 있고, 빠른 응답이 필요한 추론 단계에서는 더 낮은 지연을 제공하도록 동적으로
재구성할 수 있다. 이렇게 유연한 자원 관리는 연산 능력과 메모리 용량 등을 최적으로 활용하여 전체 시스템
효율성을높일수있다.

CXL 기반인프라는동적이고빠르게변화하는 AI 워크로드를효율적으로수용하며다수
성능지표를동시만족할수있도록도울수있다. 또한 CPU 개입없이다양한가속기가
공유메모리를직접접근할수있도록하여성능과비용효율성을극대화할수있다.

이러한 아키텍처적 특징을 통합적으로 활용하면, CXL 기반 인프라는 빠르게 변화하는 AI 워크로드의 요구사항을
효율적으로수용하고동적으로대응할수있다. 특히확장가능한스케일업도메인은자원간의통신오버헤드를크게
줄여전체성능을향상시키며, 불필요한추가스위치를최소화하여 TCO도낮출수있다. 또한가속기는CPU의개입
없이 공유된 메모리를 직접 접근할 수 있어 데이터 전송 부담이 줄어들고, 결과적으로 연산 성능 및 비용 효율성이
향상된다. 따라서, CXL 기반의 모듈형 아키텍처는 대규모 AI 워크로드가 요구하는 다양한 성능 지표를 효과적으로
지원하는유연하고강력한솔루션이될수있다.
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5. 컴포저블CXL아키텍처: 통합전략과실증평가

이제까지컴포저블 CXL 아키텍처가현대 AI 인프라에서발생하는확장성및성능문제를어떻게해결할수있는지
살펴보았다. 특히 메모리와 가속기 자원을 동적으로 분리하고 통합하는 방식을 통해, 기존의 RDMA 방식보다 높은
유연성과 적응성을 제공한다는 점을 강조했다. 그러나 지금까지 논의한 구조는 주로 CXL 기반의 모듈형 트레이
상위 수준 설계에 초점이 맞춰져 있었다. 실제 구현을 위해서는 개별 트레이를 구체적으로 어떻게 구성하고, 트레이
내부에서 GPU와 가속기간연결을어떻게효율적으로구성해야하는지에대한심도있는논의가필요하다.
본 절에서는 CXL 기반 컴포저블 인프라의 구체적인 구현 방법에 집중한다. 이를 위해 구체적인 통합 전략을
제시하고, 다양한실제워크로드를사용한평가와사용사례를살펴보며그성능과효율성을입증하고자한다.

5.1. 컴포저블CXL 데이터센터의메모리및가속기관리
이하위절에서는다음의주요요소들을중심으로논의한다. 먼저전용메모리풀을구성하기위한다양한아키텍처적
요구사항과구현방향을알아보고, 이어서대규모 AI 인프라내에서가속기의효율적인할당과연결전략을설명한다.
마지막으로메모리와가속기자원을일관성있게관리할수있는통합소프트웨어프레임워크의개발방향을다룬다.

전용메모리풀의구현과관리. 전용 메모리 풀을 구현하고 관리할 때는 다음의 핵심적인 요소들을 고려해야 한다.
첫번째는메모리트레이자체의하드웨어구조와구체적인구현방식을결정하는것이다. 두번째는비용효율적으로
CXL 스위치를배치하고, 이스위치가컴포저블시스템내에서어떤역할을수행할지정의하는것이다. 마지막으로는
메모리풀에적합한후단(Backend) 메모리미디어를신중히평가하여선택해야한다.
먼저메모리트레이의하드웨어구성방식부터살펴보자. 그림 28(a)에나온것처럼, 메모리트레이는 “단순메모리
묶음(JBOM, Just Bunch of Memory)” 형태또는전용메모리박스(DedicatedMemory Box) 형태로구현될수
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|그림 28| 트레이기반전용메모리풀구현및관리전략.

있다. JBOM 방식에서는 메모리 확장 장치를 데이터센터 표준인 EDSFF(Enterprise and Datacenter Storage
Form Factor [335–338]) 모듈 형태로 배열하여 사용한다. 이는 많은 제조사들이 사용하는 표준 방식이지만,
제조사 간 성능 차이와 운영 관리의 복잡성으로 인해 비용과 관리 부담이 증가할 수 있다. 특히, 메모리 미디어 교체
시더긴수명을가진 CXL 및 메모리컨트롤러도함께교체해야하기때문에 TCO가 상승할수있다.
반면, 전용메모리박스형태는별도의시스템온칩(SoC, System-on-Chip)에 여러개의DRAM과 CXL 컨트롤
러를통합하여구성한다. 그림 28(b)에나타난것처럼, 이방식은메모리컨트롤러를메모리미디어로부터분리하여,
컨트롤러로 하여금 저수준 DRAM칩이나 듀얼 인라인 메모리 모듈(DIMM, Dual Inline Memory Module [339–
341])을 직접 활용할 수 있게 한다. 이러한 분리 방식은 데이터센터 입장에서 유지보수와 운영 비용을 현저히
줄이고, 오래된 DIMM이나 기존 DDR 메모리 모듈을 재사용할 수 있어 추가적인 비용 절감 효과를 얻을 수 있다.
또한 사용자는 포트 수, 대역폭, 메모리 유형 등을 워크로드에 맞게 유연하게 구성할 수 있으며 DDR3 [342–345],
DDR4 [346–348], LPDDR [349–351] 등의 다양한메모리를필요에따라도입하여성능과비용간균형을맞출
수도있다. 다만, 이 방식은데이터무결성관리나이기종하드웨어간의복잡한설계관리와같은추가적인복잡성이
발생할수있다.
다음으로, 메모리확장장치와SoC컨트롤러를효과적으로연결할최적의CXL스위치배치방안을결정해야한다.
그림 28(c)에나타난것처럼, 메모리트레이내부에직접CXL스위치를통합하면여러장치간의호환성문제나성능
차이를쉽게관리할수있다. 각 트레이를독립된장치로취급함으로써앞서언급된 JBOM과 같이내부하드웨어의
변화를 외부에 노출하지 않고, 일관된 성능과 표준화된 인터페이스를 제공할 수 있다. 이 방식은 메모리 트레이를
더욱긴밀하게통합하지만, 트레이당비용이높고하드웨어유연성이떨어질수있다. 반대로, 스위치를외부의전용
트레이나 랙 중앙(MoR) 또는 상단(ToR)에 집중적으로 배치하면 메모리 트레이를 단순화하고 재사용하여 비용을
낮추고, 다양한데이터센터환경에서의유연한배치가가능해진다.

본한글보고서는다양한독자들의이해를돕기위한목적으로직 ·번역된것으로, 정확한내용은원문기술보고서를참고하시기바랍니다.

본 문서에포함된콘텐츠는다수의특허및저작권법을통해보호받고있습니다.

54



파네시아기술리포트

|그림 29| 토폴로지비교: 클로스(Clos), 3D-토러스(3D-Torus), 드래곤플라이(Dragonfly).

마지막으로, 다양한 메모리미디어를트레이내부에서계층적으로구성하여전체효율을높이도록구현할수있다
(그림 28(d)). 최신 DRAM(DDR4/DDR5)은 비용이 높고 유연성이 제한적이기 때문에, 비용 효율이 좋고 전력
소모가 낮은 모바일 메모리(LPDDR)이나 구형 DRAM(DDR3 등)와 같은 메모리를 선택적으로 사용할 수 있다.
추가적으로, 고성능의 HBM 모듈을 트레이 내부 중간 계층(Intermediate Buffer Layer)으로 활용하여 LPDDR
이나 DDR3와 같은 메모리 모듈의 성능을 높이고, 메모리 확장 장치 간 성능 차이를 보완하여 지연을 줄일 수 있다.
또한플래시메모리나PRAM과같은비휘발성메모리를도입하면데이터지속성을제공하면서성능과비용측면에서
추가적인최적화효과를얻을수있다.

가속기자원관리: 토폴로지와상호연결전략. 가속기의 자원을 효율적으로 관리하려면 단순히 서로 연결하는 것
이상으로 여러 요소를 신중하게 고려해야 한다. 특히, 토폴로지 설계는 가속기 제조사의 다양한 특성과 워크로드별
통신요구를충분히반영하여결정되어야한다. 본절에서는텐서병렬화(Tensor Parallelism)를활용하며,데이터의
지역성(Data Locality)이 높고 인접 가속기 간에 데이터 교환이 집중되는 LLM 워크로드를 중심으로, 가속기 자원
관리의 주요 사항을 논의한다. 임의의 일반적인 트래픽을 처리하는 범용 AI 데이터센터를 위한 하이브리드 연결
방식은이후 6절에서별도로다룬다.
1차원적인연결구성만을제공하는 UALink나 NVLink와 같은 기존의가속기전용인터커넥트기술과비교할때,
CXL은다양한형태의연결구성을지원하여데이터센터에서다양한자원을유연하게연결하도록해준다. 그림 29에
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(a)가속기-간 직접연결된가속기클러스터. (b)계층적으로확장된가속기클러스터.

|그림 30| 스위칭로직을포함하는가속기중심통합전략.

서는 현대 데이터센터에서 흔히 쓰이는 클로스 [256, 352, 353], 3D-토러스 [354–357], 드래곤플라이 [358–
360]의 주요 특성을 비교하였다. 먼저 클로스 토폴로지는 다단계의 스위치를 통해 모든 노드 간 균일한 대역폭을
제공하며 확장성이 매우 뛰어난 토폴로지를 제공하지만, 인터커넥트 패브릭 구성의 구축 비용과 복잡성이 높다는
단점이있다. 3D-토러스토폴로지는3차원메쉬형태로노드를직접연결하여근거리통신을효율적으로처리하지만,
먼 거리의데이터교환에서는병목이발생할수있다. 드래곤플라이토폴로지는로컬그룹간완전연결과그룹간의
간접연결을조합하여성능과비용의균형을유지하지만, 특정 통신패턴에서는효율성이떨어질가능성이있다.
LLM 워크로드의특징상(예: 인접가속기간의집중적인데이터교환), 3D-토러스나드래곤플라이가적합해보일
수있지만, 가속기의수가많아질수록요구되는스위치의개수가급격히증가하여대규모데이터센터구축에현실적
으로 사용이 어렵다. 따라서 캐시 일관성을 유지하면서 가속기를 연결하는 “단일 홉”의 평면형 클로스 토폴로지를
사용하는 것이 더 실용적이다. 이러한 설계는 NVLink나 UALink와 같은 기존 가속기 전용 인터커넥트와 유사한
전략으로, 합리적인 비용으로 효율적인 로컬 통신을 가능하게 한다. 다만 현재의 CXL 사양은 캐시 일관성 연결이
가능한가속기의수를최대 256개로제한하고있어, 더큰규모의연결에는다른전략이나추가적인스위치가필요할
수있다.
더욱적극적인통합방안이그림30a에제시되어있다. 이방법은중간에별도의CXL스위치를두지않고가속기들
이직접완전연결토폴로지를형성하는방식이다. 각 가속기가내부에경량화된 CXL 스위칭로직을직접통합하여,
추가적인외부연결장비가필요없게된다. 완전연결방식의아키텍처는인접한가속기간데이터전송을최적화하여,
LLM처럼로컬통신이빈번한워크로드에서특히높은성능을보인다. 이렇게구성된가속기클러스터는그림 30b에
나타난것처럼랙이나플로어등으로외부의CXL스위치를통해계층적으로확장할수있다. 또한가속기내에위치한
로컬HBM을적극적으로활용하면내부통신효율성을더욱높일수있다. 다만, 이완전연결방식은가속기와 Type
1 및 Type 2 장치에들어가는CXL 컨트롤러설계를복잡하게만들수있으며, 클러스터간외부통신시성능불균형
문제가발생할가능성도있다. 따라서실제대규모로구축할때는성능평가와설계를신중히진행해야한다.
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컴포저블자원을위한통합관리프레임워크. AI 데이터센터에서컴포저블 CXL 인프라를실제로구현할때는소프
트웨어와관련된여러설계요소를신중하게고려해야할수있다. 기존의정적인메모리할당방식(Static Memory
Allocation)은추천시스템의임베딩테이블이나트랜스포머모델의어텐션캐시와같이빈번히접근하는데이터에서
지나친데이터이동과높은지연을유발할수있다. 이러한문제를극복하려면고급소프트웨어프레임워크를도입하여
동적이고 효율적인 메모리 관리를 지원해야 한다. 예를 들어, 접근 빈도를 예측하여 데이터를 미리 적합한 메모리
위치로 이동시키는 예측 기반 메모리 배치(Predictive Memory Placement), 미리 캐시를 준비하는 선제적 캐시
워밍(Proactive Cache Warming), 그리고실시간접근패턴에따라캐시에서데이터를유연하게제거하는적응형
퇴출정책(Adaptive Eviction Policy) 등을도입할수있다. 특히, 텐서병렬방식을사용하는 LLM의추론과정에서
자주접근하는어텐션캐시를가속기가까운곳에동적으로배치하면성능과처리량을크게향상할수있다.
가속기자원의효율적인관리또한시스템전체의성능을결정하는중요한요소이다. 기존 GPU-CPU 통합아키텍
처는연산과메모리를밀접하게결합하여다양한워크로드환경에서가속기의효율성을제한하는경우가많다. 반면,
CXL 기반의 컴포저블 아키텍처는 자원을 독립적으로 확장하고 동적으로 재구성할 수 있으므로 변화하는 워크로드
요구에 빠르게 대응할 수 있다. 이를 효과적으로 달성하려면 워크로드를 실시간으로 모니터링하고, 자원을 미리
예측하여할당하며, 작업우선순위에따라가속기를효율적으로배치하는소프트웨어프레임워크가필요하다. 또한,
빠르게 자원을 재구성할 수 있는 기능과, 하드웨어 자원을 정밀하게 조정하고 가속기 간 통신 지연을 최소화하는
기술도필수적이다.
메모리와 가속기 자원을 함께 관리하려면 기존의 정적인 방식에서 벗어나 중앙 집중형 모니터링 프레임워크가
필요할 수도 있다. CXL 기반의 컴포저블 시스템에서는 자원의 사용량이 동적으로 변화하므로, 실시간으로 시스템
정보를수집하고성능을분석하여필요한조치를자동으로수행할수있어야한다. 예를 들어, 실시간으로원격측정
데이터를수집하고(Telemetry), 캐시일관성메모리의효율성을점검하며, 자원할당의지연과, 자원간경합상황을
감지하여 자동으로 문제를 해결하는 기능이 있다면 추가적으로 성능을 향상시킬 수 있을 것이다. 미래에는 강화
학습과같은고급기술을이용하여자원배치와사용을최적화하고문제를예측하여미리대응할수있는소프트웨어
프레임워크가더욱중요해질것이다. 이러한발전된기능은 AI 워크로드에서민감한지연문제를해결하여시스템의
반응성과효율성을크게높일수있을것으로기대된다.

5.2. AI 워크로드를위한CXL 인프라: 실증적사례연구
앞서 소개된 CXL의 이론적인 장점들을 바탕으로, 본 절에서는 실제 프로토타입 시스템을 구축하여 CXL 기반
컴포저블 인프라가 실제 환경에서 얼마나 효과적인지를 평가하였다. 특히, RAG, Graph-RAG, 딥러닝 추천 모델
(DLRM), MPI 기반과학컴퓨팅등대표적인 AI 및 HPC 워크로드를실험하여기존아키텍처대비 CXL의 실질적인
성능이점을확인하였다.
실험결과,컴포저블CXL인프라는기존RDMA시스템에서빈번히나타나는긴지연,과도한데이터이동오버헤드,
비효율적인 메모리 활용 문제를 효과적으로 해결하는 것으로 나타났다. 그림 31은 본 절에서 소개될 워크로드별
실험을통해기존아키텍처대비 CXL 기반 시스템이얼마나성능이향상되는지를요약한것이다. 구체적으로, LLM

본한글보고서는다양한독자들의이해를돕기위한목적으로직 ·번역된것으로, 정확한내용은원문기술보고서를참고하시기바랍니다.

본 문서에포함된콘텐츠는다수의특허및저작권법을통해보호받고있습니다.

57



파네시아기술리포트

|그림 31| 성능향상치요약: RAG, Graph-RAG, DLRM, 그리고 MPI.

과결합된RAG및Graph-RAG기반AI 검색워크로드의실행시간이기존대비5배이상단축되었으며, 데이터이동
오버헤드는최대21.1배까지감소하였다. 임베딩중심의DLRM워크로드는추론실행시간이약3.32배향상되었고,
텐서초기화속도도 2.71배 빨라졌다. 또한, MPI 기반의 HPC 애플리케이션에서도 CXL의직접메모리공유로실행
시간이약 1.8배 개선되고, 통신 오버헤드는최대 5.02배 감소하였다.
이후 하위 절에서는 앞으로 소개될 CXL 프로토타입 실험 환경에서 수행한 다양한 워크로드 평가 시나리오와 그
성능결과를구체적으로설명한다. 또한, 이러한평가결과를바탕으로CXL기반AI 데이터센터설계를위한핵심적인
아키텍처적시사점과실질적인설계방법등을논의해본다.

실험 환경 구성. 컴포저블 CXL 아키텍처를 평가하기 위해 CXL 3.0 표준을 준수하는 실제 시스템 프로토타입을
개발하여 실험 환경을 구축하였다. 그림 32a과 32b는 본 연구에서 사용한 실리콘 검증(Silicon-Proven) CXL
컨트롤러 IP와 실험환경설정을각각나타낸것이다. 이 실험환경에서는 GPU 컴퓨팅노드와컴포저블메모리확장
장치를계층적CXL 스위치토폴로지로연결하였다. 메모리확장장치와스위치는표준CXL 하드웨어스택을사용하
며, GPU와 CPU 노드는 자체 개발한 CXL 하드웨어를루트 포트및엔드포인트컴플렉스에직접통합하였다. 현재
상용 CXL 3.0 호환 GPU 및 CPU가 없으므로, 오픈소스 Vortex GPU [361, 362]와 RISC-V CPU [363, 364]
마이크로아키텍처를 사용하여 자체 개발한 CXL 컨트롤러 기능을 포함하도록 수정하였다. 이렇게 수정된 GPU와
CPU 프로토타입은각각그림 32c와 32d에서 볼수있다.

(a) CXL IPs. (b)실제시스템프로토타입. (c) CXL GPU. (d) CXL CPU.

|그림 32| 실험용 CXL3.0 호환 종단간인프라구조.
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구성된 메모리 모듈은 캐시 일관성을 유지하며 동적으로 재구성 가능한 메모리 풀을 형성하고, GPU 컴퓨팅 노드
에게는별도의 NUMA [365–367] 도메인으로표시되도록구성되었다. 이러한컴포저블설계덕분에 GPU 노드는
CPU 중심의 메모리 관리나 RDMA 프로토콜 없이도 공유 메모리에 직접 접근할 수 있다. 본 연구에서 사용한 프로
토타입은경량화된오픈소스 CPU 및 GPU 설계를기반으로했지만, 우리가개발한 CXL 컨트롤러및하드웨어스택
IP는 다양한 서드파티의 GPU, NPU, 메모리 확장 장치 등과도 호환 가능하다. 또한 이 IP는 다양한 캐시 및 시스템
버스인터페이스를지원하며기존하드웨어플랫폼에쉽게통합될수있다.

RAG 활용 사례: 인터랙티브 검색 및 추론 가속화. 벡터 매칭과 실시간 추론이 결합된 인터랙티브 검색 작업은
기존 인프라에서 높은 지연과 많은 메모리 사용량 때문에 성능 저하가 자주 발생하는 워크로드이다. 하위 절에서는
컴포저블 CXL 인프라의 실제 효과를 검증하기 위해, 최신 LLM과 결합된 사용자 친화적인 RAG 시나리오를 평가
하였다. 그림 33에서 보는 것처럼, 사용자가 자신의 냉장고에 있는 음식 재료의 이미지를 업로드하고 원하는 식사
유형(예: 아침 또는 저녁)을 선택하면, 이에 맞는 요리법을 추천해 주는 시스템이다. 사용자가 올린 이미지는 사전
학습된 비주얼-언어 모델인 CLIP [368–370]을 이용해 임베딩 벡터로 변환되며, 이 벡터는 시스템에 저장된 기존
레시피 임베딩과 벡터 매칭을 통해 비교된다. 기존 RDMA 기반 인프라와 달리, 컴포저블 CXL 아키텍처는 메모리
접근지연과소프트웨어오버헤드를줄여벡터검색과정에서성능을크게향상시켰다.
검색된임베딩벡터는이어지는 LLM기반추론단계의입력으로사용되어, 사용자맥락에적합한요리법을추천한
다. 기존 RDMA 시스템에서는이과정이수백밀리초에서부터심지어수초대의지연이발생하지만, 컴포저블 CXL
인프라는수십밀리초수준으로응답속도를눈에띄게개선하였다. 그림 33d에서나타난것처럼, 벡터검색및 LLM
추론작업에서기존대비각각약 14배와 2.78배 빠른속도를달성하였다. 이는사용자대응애플리케이션에서매우
중요한요소로, 사용자경험과만족도를크게향상시킬수있다.

Graph-RAG활용사례: 지식그래프기반검색및추론가속화. 구조화된지식검색을추론과결합한Graph-RAG
워크로드도메모리접근지연문제로인해기존인프라에서성능이저하되는경우가많다. 본연구에서는Graph-RAG
시나리오를통해컴포저블CXL인프라의성능을평가하였다. 그림 34에서볼수있듯, 평가과정은먼저원본텍스트
데이터를RDF임베딩 [371, 372]이나그래프신경망(GNN, Graph Neural Network [373–375])과같은기술로
처리하여효율적인지식그래프를구축한다. 이후사용자쿼리는벡터형태로변환되어구축된지식그래프와빠르게

(a)초반 (t0). (b)중반 (t1). (c)후반 (t2). (d)단계별실행시간.

|그림 33| RAG 활용사례: 요리법추천 (데모 동영상: [Link]).
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(a)초반 (t0). (b)중반 (t1). (c)후반 (t2). (d)단계별실행시간.

|그림 34| Graph-RAG 활용사례: 지식 그래프기반쿼리처리.

매칭 [376–381]되도록하고, 이결과가LLM추론과정에입력되어전체맥락을이해하여보다정확한응답을생성해
낸다 [323, 382, 383].
기존의인피니밴드를이용한 RDMA 기반시스템과비교했을때, 컴포저블 CXL 아키텍처는전체워크플로우실행
시간을 약 8.05배 단축하였다. 특히 그림 34d에서 볼 수 있듯이, 기존 시스템에서는 수십 초 걸리던 작업이 벡터
검색과 LLM 추론 단계에서각각 1.7초와 2.2초만에 완료되었다. 이러한 성능개선은 CXL이 제공하는캐시일관성
메모리 풀 덕분이며, CXL 프로토콜과 하드웨어 구조가 Graph-RAG 실행 시 발생하는 데이터 복사 및 소프트웨어
오버헤드를최소화한결과이다.

DLRM 활용 사례: 딥러닝 기반 추천 워크로드 가속화. DLRM [384–386] 워크로드는 임베딩 조회의 효율성이
중요하며, 대규모메모리요구로인해기존인프라에서메모리관련된성능문제가자주발생한다. 본 하위절에서는
컴포저블 CXL 인프라를 활용하여, 실제 프로덕션 환경을 대표하는 대규모 임베딩 테이블을 사용한 텐서 초기화 및
추론 단계를 분석 및 비교하였다. 그림 35에 보이듯, 텐서 초기화 단계에서 컴포저블 CXL 인프라는 기존 RDMA

(a)초반 (t0). (b)중반 (t1). (c)후반 (t2). (d)실행속도개선.

|그림 35| DLRM 활용사례 (데모 동영상: [Link]).
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(a)초반 (t0). (b)중반 (t1). (c)후반 (t2). (d)실행속도개선.

|그림 36| MPI 활용 사례: 플라즈마시뮬레이션 (데모 동영상: [Link]).

기반 시스템 대비 큰 성능 향상을 보였다. 기존 시스템의 소프트웨어 오버헤드와 높은 지연을 컴포저블 인프라가
하드웨어수준의직접메모리접근및캐시일관성메모리풀을통해크게줄였기때문이다. 텐서초기화후반복적인
추론 연산을 수행했을 때도 컴포저블 CXL은 기존 시스템 대비 전체 처리량을 약 3.32배 향상시켰다. 구체적으로
텐서초기화와추론단계에서각각 2.71배와 3.51배의속도개선을보였다(그림 35d). 이 성능개선은전자상거래나
스트리밍서비스등상용플랫폼의개인화된콘텐츠제공속도를높여사용자경험을크게향상시킬수있다.

MPI 기반 과학 응용 사례: CXL을 활용한 메모리 공유 성능 평가. MPI 기반의 과학 컴퓨팅 프로그램은 노드 간
빈번한 데이터 통신과 동기화 과정에서 발생하는 지연으로 인해 기존 네트워크 기반 아키텍처 [387–389]에서
성능 확장성에 한계가 있다. 본 연구는 주로 AI 워크로드에 중점을 두고 있으나, 컴포저블 CXL 인프라를 통해 직접
메모리공유방식을활용할때의이점을확인하기위해대표적인MPI 과학 응용프로그램을평가하였다. 예를 들어,
입자-셀(PIC, Particle-In-Cell [390–392]) 플라즈마 시뮬레이션과 전산유체역학(CFD, Computational Fluid
Dynamics [393–395]) 시뮬레이션은노드간데이터교환과상태동기화가빈번하여분산 AI 환경의통신패턴과
유사하다.

(a)초반 (t0). (b)중반 (t1). (c)후반 (t2). (d)실행속도개선.

|그림 37| MPI 활용 사례: CFD 시뮬레이션.
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본 연구에서는 위에서 예제로 제시된 두 가지 대표적인 MPI 시나리오를 평가하였다. 첫 번째로 그림 36와 같이
PIC 프레임워크인 WarpX [390]를 이용한 플라즈마 시뮬레이션을 수행했다. 수억 개의 입자가 여러 계산 노드에
분산되어상호작용하는시나리오에서, 기존의인피니밴드기반 RDMA 시스템은소프트웨어개입및장치간데이터
이동으로 인해 높은 오버헤드를 초래하였다. 이에 반해, 본 연구에서 사용한 컴포저블 CXL 기반 인프라는 호스트
CPU가 입자데이터를동적으로구성가능한 CXL.cache 공유 메모리에직접저장하여, 다른 노드들이소프트웨어
프로토콜을 거치지 않고 즉시 데이터에 접근할 수 있었다. 이를 통해 그림 36d에서 분석된 것과 같이 기존 RDMA
시스템대비계산과통신에서각각 1.62배, 6.46배의 성능향상을달성했다.
두 번째 사례로 그림 37에 표현된 CFD 시뮬레이션을 수행하였다. 이 시나리오에서는 도메인 간 유체 상태를
빈번히 동기화할 때 기존 RDMA 기반 네트워크에서 상당한 지연이 발생하였다. 그러나 컴포저블 CXL 인프라는
유체시뮬레이션상태데이터를공유메모리에직접저장하고CPU가이를바로접근할수있도록함으로써네트워크
기반 동기화 작업을 명시적으로 없앴다. 이는 데이터 일관성과 캐시 일관성이 CXL.cache에 의해 자동 관리되었기
때문이다. 그 결과, 그림 37d에서 볼 수 있듯, 기존 시스템 대비 계산 시간은 약 1.06배, 통신 시간은 약 3.57배
단축되었다.
비록 오픈소스 기반의 하드웨어에 CXL 컨트롤러와 스위치를 통합한 프로토타입 시스템으로 평가한 결과이지만,
이러한 MPI 기반 과학 응용 사례 실험을 통해서 우리는 CXL 기반의 인프라가 HPC 환경에서 명시적인 네트워크
작업을제거하여지연과소프트웨어오버헤드를크게줄일수있음을확인하였다. 또한CXL기반인프라가MPI 기반
과학응용, 병렬작업처리시자원분리와메모리공유를통해데이터관리를단순화하고, 분산환경에서의확장성과
운영효율성을향상할수있음을확인할수있었다. 이러한개선효과는기후모델링, 천체물리학, 핵융합연구와같이
다른대규모과학응용분야등에서도매우유용할것으로기대된다.
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6. CXL을 넘어: 하이브리드 링크 아키텍처를 활
용한AI 자원연결최적화

CXL은 메모리 확장과 일관된 데이터 공유라는 중요한 문제를 해결하지만, 일부 가속기 중심의 워크로드에서는
가속기간의데이터교환성능을더욱높이기위해다른인터커넥트기술과결합하여사용하는것이데이터센터전체
효율성을극대화하는데도움이될수있다. 대표적으로가속기간통신에최적화된인터커넥트기술로는 UALink와
NVIDIA의 NVLink가 있으며, 본 보고서에서는이둘을통칭하여 “엑스링크(XLink)”라고 부르도록하겠다.
XLink 기술은 가속기 간의 데이터전송속도를최적화하는 P2P 방식의 직접적인 연결을제공하여 밀집된가속기
클러스터내에서데이터전송성능을크게향상시킨다. 다만 XLink는 CXL과달리프로토콜수준의캐시일관성이나
메모리풀링과같은기능을지원하지않는다. 대신 XLink는단일홉의인터커넥트구조를사용하여낮은지연과높은

(a)가속기중심클러스터. (b)계층적메모리아키텍처.

|그림 38| 하이브리드인터커넥트구조(CXL-over-XLink)의 개괄.
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효율성을갖춘가속기간데이터전송에특화되어있다. UALink와 NVLink는단일-홉토폴로지정책등가속기연결
에 대한 유사한 설계 철학을 갖고 있지만, 세부적인 구현 방식에는 차이가 있다. UALink는 대용량 데이터 전송에는
물리 계층으로서 이더넷 기반 기술을 사용하는 반면, NVLink는 텐서 전송 및 GPU 간 그래디언트 동기화와 같은
중소규모데이터교환에특화된 NVIDIA의 독자적인전기적신호전송기술을활용한다.
그림 38a와 그림 38b에서 볼 수 있듯이, 본 보고서에서는 CXL과 XLink의 상호보완적인 장점을 결합하여 전체
시스템 성능을 최적화할 수 있는 “하이브리드 인터커넥트 구조(CXL-over-XLink)”를 제시한다. 또한, CXL-over-
XLink를구현하기위한두가지설계방법을제시한다. 첫번째는 “가속기중심클러스터”방식으로, 가속기간의빠른
데이터 교환을 극대화하는 구조이다. 두 번째는 “계층적 메모리 아키텍처” 방식으로, 대규모 데이터를 효율적으로
처리하기 위해 분리된 메모리 풀을 적극적으로 활용하는 설계이다. 두 설계 구조 모두 CXL과 XLink의 장점들을
결합, LLM과 같은 대규모 워크로드를 실행하는 데 가속기 간 호환성을 최대화하면서 연산과 메모리 요구량 모두를
만족시킬수있도록설계되었다.
구체적으로, XLink는 단일홉의클로스토폴로지를사용하여가속기간의데이터교환을최적화하며, 텐서 데이터
전송이나 그래디언트 동기화와 같은 지연에 민감한 작업에서 뛰어난 성능을 제공한다. 그러나 XLink의 단일-홉
클로스토폴로지는가속기의수가늘어날경우연결성확장에한계가있다. 반면, CXL은다단계스위치캐스케이딩을
지원하여 보다 높은 확장성을 제공하며, 데이터센터 전반에서 다양한 토폴로지 구성을 가능하게 한다. 또한 CXL은
프로토콜수준에서캐시일관성메모리풀링을제공하기때문에 KV 캐싱및 RAG와 같이메모리집약적이고동적인
워크로드에 효과적이다. 더 나아가, CXL은 노드 간 데이터 공유를 효율적으로 지원하여 불필요한 데이터 이동을
최소화하고메모리활용도를크게향상시킨다.
또한 컴포저블 자원 분리 개념을 활용하면, 계산 자원과 메모리를 물리적으로 분리하여 독립적인 확장과 유연한
관리가 가능하다. XLink로 연결된 컴퓨트 노드와 CXL 기반의 메모리 풀을 함께 운용하면, 연산 집약적인 학습
워크로드와지연이중요한추론워크로드사이를신속하게전환하는운영상의민첩성을확보할수있다. 또한메모리
자원을성능과용량요구에따라계층적으로배치하여자원활용도를최적화할수있다.
본섹션에서는다양한인터커넥트기술의이해를돕기위해XLink기술을간단히먼저설명하고, UALink와NVLink
각각의 주요 특성과 최적화 방안을 중점적으로 논의한다. 이어서 CXL과 XLink를 결합한 하이브리드 아키텍처 전
략에 대해 자세히 소개하며, 두 기술의 상호보완적인 강점이 현대 AI 데이터센터의 다양한 워크로드 요구를 어떻게
효과적으로충족시킬수있는지구체적으로제시한다.

6.1. 가속기중심인터커넥트개요: UALink와 NVLink

울트라 엑셀러레이터 링크 (UALink). UALink는 데이터센터 내 가속기 간의 통신 속도를 높이기 위해 설계된
인터커넥트 기술이다 [70, 396, 397]. CXL이 메모리의 독립적인 확장, 일관된 메모리 관리, 통합된 메모리 풀
구성과 같은 메모리 중심 기능에 초점을 맞추고 있는 반면, UALink는 가속기 사이에서 높은 대역폭으로 직접 데이
터를 주고받는 데 주력한다. 따라서 가속기 간에 데이터 교환량이 많고 빠른 동기화가 필요한 워크로드에서 특히
효과적이다. 일반적인 4레인구성기준으로 UALink는 포트당최대 100GB/s의 높은대역폭을제공할수있다.
2025년초에도입된UALink 1.0 [69]은GPU중심의NVLink와비슷한특징을갖고있지만,특정GPU제조사에
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|그림 39| 가속기중심인터커넥트.

의존하지않고다양한가속기를지원하는개방형표준(Open Standard)으로설계되었다. UALink는단일-홉클로스
스위치토폴로지를사용하여가속기간에직접연결된저지연통신경로를구축하며, 최대 1,024개의가속기를하나의
클러스터로 연결할 수 있다. 그림 39에 나타난 것처럼, 이 단순한 구조를 통해 랙 내부의 통신 지연을 1마이크로초
(µs [70]) 이하로 매우 낮게유지할수있다. 이러한 단순화된토폴로지와높은확장성덕분에, UALink는 밀접하게
연결된가속기클러스터에서필요한빈번한데이터교환과빠른동기화요구를효과적으로만족할수있다.
UALink는 특히큰용량의데이터전송을빠르게처리하기위해 640바이트의데이터플릿(Flit) 단위를사용한다.
또한기본적인명령어기반의메모리접근메커니즘도제공하지만, 이는주로관리및제어를위한보조적인기능으로
활용되며, UALink의 주된목적은고속의대규모데이터전송에있다. 또한 UALink는 캐시일관성이나메모리풀링
같은일관성유지기능을기본적으로제공하지않으며, 명시적으로비일관성(Non-Coherent) 프로토콜로설계되어
있다. 이는빈번한데이터공유와일관성메모리관리, 그리고자원의분리를주력으로하는 CXL과 근본적으로다른
특징이다.
UALink는이더넷기반의인터커넥트토폴로지를채택하여All-Gather작업과같은분산시스템에서흔히사용되는
집합적 통신 패턴에 특히 유리하다. 이러한 통신 방식은 과거부터 분산 시스템에서 널리 사용되었으며, 최근의 다중
GPU 및 가속기 환경에서도 중요성이 높아지고 있다 [8, 40, 386, 398, 399]. 빠르면서도 정확한 데이터 전달을
위해, UALink는 가속기 간의 빠른 동기화에 맞춘 특수한 프레임 구조와 프로토콜 오버헤드를 최소화하는 하드웨어
기반의동기화메커니즘을적용하고있다 [69, 397].

엔브이링크(NVLink)와엔브이링크퓨전(NVLink Fusion). NVLink는 GPU 간데이터교환을최적화하기위해
NVIDIA가 개발한 인터커넥트 기술로, 높은 대역폭과 낮은 지연 성능을 제공한다. NVLink는 UALink보다 먼저
개발되었으며, 기존 PCIe 기반인터페이스대비GPU 간데이터전송성능을크게향상시켰다. 2014년처음공개된
이후 여러 세대를 거쳐 진화했으며, 가장 최신 버전인 NVLink 5.0은 2024년에 발표되었다. NVLink는 딥러닝
학습과 HPC 워크로드에서본인들의 GPU 장치가탁월한성능을발휘하도록최적화되어있다.
구체적으로, NVLink 5.0은 링크당 50GB/s의 단방향대역폭을제공하며, 양방향 기준최대 100GB/s의 총 대역
폭을지원한다 [73]. NVLink는 엔비디아의자체크로스바(Crossbar) 스위치기술인NVSwitch를 통해구축되며,
소규모 GPU 클러스터(NVLink72 [244, 262, 263] 등)에서부터 보다 큰 규모의 GPU 환경(NVLink576 등)에
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이르기까지다양한규모의구성을지원한다. 다만, NVLink는 주로단일GPU노드나클러스터수준에서의최적화를
목표로 하고 있어 랙 단위 이상의 대규모 환경 확장에는 제한적이다. 또한 UALink와 마찬가지로 단일-홉 클로스
토폴로지를사용하여, All-Reduce나 All-Gather와 같은 집합적연산에서발생하는통신지연을최소화한다. 최신
버전인 NVLink 5.0의 지연시간은 500나노초(ns) 이하로 매우짧다 [400].
UALink와의 중요한 차이점 중 하나는, NVLink가 48바이트에서 272바이트의 비교적 작은 크기의 플릿을 사용
한다는 점이다7 [401]. 이는 중소 규모의 텐서나 그래디언트 데이터 전송에 최적화되어 있다. NVLink는 노드 간
메모리 영역을 부분적으로 통합하여 소프트웨어 프로그래밍의 복잡성을 낮추고 오버헤드를 줄이지만, 완전한 캐시
일관성을 기본적으로 제공하지는 않는다. 또한 NVLink는 기존까지 엔비디아의 제품군 내에서만 제한적으로 사용
가능하여, 다른 제조사의장비와의통합은어렵다는단점이있었다.
이러한 한계를 개선하기 위해 최근 엔비디아는 NVLink 퓨전(NVLink Fusion [74, 75])을 도입하였다. NVLink
퓨전은 CPU, NPU [402–404], 그리고 AI 전용 프로세서 [405–414] 등 다양한 외부 프로세서와 GPU 간의 연결
성을 크게 향상시켜, 상호 운용성을 높였다. NVLink 퓨전은 크게 두 가지로 구성되어 있다. 첫째는 캐시 일관성을
지원하는 칩 간(C2C) 단거리 인터페이스로서 외부 프로세서와 GPU 간의 직접적인 데이터 공유를 가능하게 하는
코히어런트 IP(Coherent IP)이다. 둘째는 칩렛(Chiplet) 기반의 구현방식을통해 CPU와 GPU 간의 통신성능을
추가적으로최적화하는것이다.
NVLink퓨전은기존NVLink의강점인높은대역폭과저지연성능을유지하면서도, CPU와GPU간의공유메모리
접근을 더욱 유연하고 효율적으로 만들어준다. 그러나 NVLink 퓨전 역시 시스템 내에 최소 하나 이상의 엔비디아
컴포넌트가 포함되어야 한다는 정책적 제약을 가지고 있다 [74, 75]. 따라서 현재로서는 다양한 제조사의 제품을
조합하여사용하는이기종환경(Heterogeneous Environment)에서의자원분리나제조사중립적컴포저빌리티에
사용되기가어렵다.

CXL과 XLink 기술의 주요 특성 비교. 표 3에서는 본 보고서에서 다룬 세 가지 주요 인터커넥트 기술인 CXL,
UALink, NVLink 간의 특징을정리하여비교하였다.
앞서 설명한 바와 같이, CXL은 주로 컴퓨팅과 메모리 자원을 물리적으로 분리하고, 일관된 메모리 풀 및 캐시
일관성을 지원하는 데 중점을 둔다. 표에서 볼 수 있듯이 CXL은 메모리 자체를 다루기 때문에, 지연 시간이 다른
어떤 인터커넥트 기술보다 짧다. 더욱이, 캐시 일관성을 지원하기 때문에 메모리 접근 시 가속기 내 캐시에서 바로
데이터가서비스되어지역성을가지는데이터에대해서외부전송이나접근자체를원천적으로막아, 성능을극대화할
수 있다는 장점이 있다. 가속기(Type 1 또는 Type 2 장치)에 대해서 최대 256개까지만 연결할 수 있지만, 메모리
장치처럼연결하면최대 4,096개의엔드포인트를하나의인터커넥트네트워크안에수용할수있으며, 이러한장치
연결을위한실질적인PBR라우팅, 그리고스위치케스케이딩을지원한다. 이와같은특장점에의해, 자원의확장성과
캐시일관성유지, 메모리자원의유연한할당과같은부분에서강점을가진다. 따라서 CXL은빈번한동기화통신및
메모리사용량이많은워크로드와자원을유연하게구성해야하는컴포저블환경에적합하다.
이에비해, XLink 기술들은가속기간의직접적이고빠른데이터전송을최우선으로하며, 높은대역폭의연결성을
제공하는데집중한다. 하나의 데이터전송에대한지연시간은 CXL보다 느린 편이지만플릿의크기가큰편이거나

7NVLink에서 실제 플릿의 크기는 16바이트(128비트)이지만, 하나의 패킷은 헤더 플릿 1개와 최대 16개의 데이터 플릿으로 구성된다.
최소전송단위는 2개의데이터플릿(32바이트)이며, 최대는 16개의데이터플릿(256바이트)로 구성되어전체패킷크기는 48바이트에서
272바이트사이범위를가진다. 본 절에서는이러한구성형식을따르는전체패킷을 NVLink 플릿이라고정의한다.
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|표 3| CXL, UALink, NVLink의 기술사양비교.

항목 CXL 3.0 UALink 1.0 NVLink 5.0
단방향대역폭 (GB/s) 128 (링크당 16레인, PCIe 6.0) 100 (링크당 4레인) 50 (링크당 2레인)

지연 시간 수백나노초 (일반적으로 100–250
ns) 1 마이크로초이하 (랙 내 기준) 500 나노초이하 (랙 내 기준)

플릿 크기 256B (PBR), 68B (HBR) 640B 48B∼272B
캐시 일관성 지원 (하드웨어수준) 미지원 미지원 (NVLink C2C만 지원)

메모리풀링 지원 미지원 (UALink로 연결된가속기
내에서만지원)

미지원 (NVLink로 연결된가속기
내에서만지원)

토폴로지 P2P, 스위치기반패브릭 (다양한
토폴로지)

P2P, 스위치기반패브릭 (단일-홉
클로스만지원함)

P2P, 스위치기반패브릭 (단일-홉
클로스만지원할수있음)

확장성 최대 4096개 장치 최대 1024개 가속기 최대 576개 GPU
일반적인배치규모 랙또는다중랙규모 랙내클러스터규모 GPU 노드또는 GPU 클러스터규모
용도 / 주요 워크로드 메모리분리, 캐시 일관성메모리풀링 가속기간집합적통신 GPU 텐서교환, 그래디언트동기화
컨소시엄 CXL 컨소시엄 UALink 컨소시엄 NVIDIA

상호운용성 공개산업표준 이더넷-기반 개방성 독점 (NVLink 퓨전을통한부분적
개방)

최초 출시 (연도) CXL 1.0 (2019) UALink 0.49 (2024) NVLink 1.0 (2016)

현재 버전 (연도) CXL 3.0 (2022), CXL 3.2 (2024) UALink 1.0 (2025) NVLink 5.0 (2024), Fusion
(2025)

특정 GPU나 가속기 장치에 최적화되어 높은 대역폭을 제공할 수 있다. 특히 UALink는 이더넷 기반의 네트워크를
사용하여 대규모 데이터를 효율적으로 전송하며, 여러 가속기 간 빈번한 데이터 교환 및 집합적 통신 패턴에 최적화
되어 있다. 반면 NVLink는 GPU 중심의 워크로드에서 중소 규모의 텐서 데이터나 그래디언트를 빠르게 교환하는
데 특화되어 플릿의 사이즈가 작고 대역폭과 지연시간의 최적화가 이루어져 있는 것으로 알려져 있다. 다만 이러한
데이터이동은기본적으로데이터공유를통한병렬처리보다는복사를통한집합통신과분산처리를가정하기때문에
두프로토콜모두하드웨어수준의캐시일관성은지원하지않는다.
따라서 본 보고서에서 데이터센터 아키텍처로써 제안하는, XLink 기술의 효율적인 가속기 통신과 CXL의 유연한
메모리풀링및캐시일관성을결합한하이브리드아키텍처는상호보완적이며강력한솔루션을제공할수있다. 이를
통해UALink 또는NVLink로상호연결된가속기들이CXL로구성된메모리자원및일관성프로토콜을함께활용할
수있도록만들수있으며기존데이터병렬접근방식보다훨씬넓은범위에서스케일업도메인을구축하고더욱높은
자원활용도와효율성을달성할수있다.

6.2. 통합가속기중심의CXL-over-XLink 슈퍼클러스터아키텍처
대규모AI 워크로드의다양한요구사항을충족하려면개별클러스터를넘어클러스터간의효율적인데이터통신이
필요하다. 참고로 여기서 클러스터란, 앞서 소개된 데이터센터 구조에서 랙 규모의 다중 가속기 시스템을 의미한다.
이러한 구조에서 단일 클러스터 내부에서는 P2P 연결을 위해 간단한 인터커넥트 구조만으로 충분하지만, 여러
클러스터를 연결할 때는 보다 유연하고 다양한 형태로 확장 가능한 토폴로지가 필요하다. 또한, 데이터센터 전체의
이종 간 자원을 효율적으로 공유하고 컴포저블하게 구성할 수 있어야 한다. CXL은 다단계 스위치 구조를 활용하여
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|그림 40| 가속기중심클러스터내부설계.

이러한대규모클러스터간자원공유를효과적으로지원할수있다.
본 절에서는 가속기 중심의 작업에 최적화된 CXL-over-XLink로 구성된 “슈퍼클러스터” 아키텍처를 제안하고
설명한다. 이 슈퍼클러스터는 여러 가속기 클러스터가 CXL 기반의 계층적 네트워크로 연결된 구조이다. 개별
클러스터 내부에서는 NVLink 또는 UALink를 사용하여 가속기 간의 직접적이고 빠른 데이터 통신을 수행하며, 각
클러스터의특징과세부구성에대해아래에서자세히다룬다.

UALink 및 NVLink 기반의 가속기 클러스터 내부 설계. CXL-over-XLink 기반의 슈퍼클러스터 아키텍처에서
NVLink와 UALink는 개별 클러스터 내부의 인터커넥트 기술로 활용된다. 앞서 설명한 바와 같이 이 인터커넥트
기술들은 유사한 기본 설계 원칙을 공유하며, 그림 40에 보여진 것처럼 주로 소규모 가속기 클러스터에서 가속기
간 통신을 최적화한 단일-홉 클로스 스위치 토폴로지를 사용하도록 구성할 수 있다. NVLink는 복수의 NVSwitch
를 통해 최대 72개의 GPU를 상호 연결할 수 있으며, 각 노드 내의 CPU는 NVLink C2C 인터페이스를 통해 GPU
와 연결된다. 이와 유사하게, UALink 또한 클러스터및랙내의가속기연결을명확히목표로하며, 애플리케이션별
요구사항에따라CPU를가속기에직접연결할수있다. UALink기반클러스터의가속기들은오직UALink스위치를
통해서만 통신하며, 이론적으로 최대 1,024개 가속기까지 지원 가능한 단일-홉 클로스 토폴로지를 형성할 수 있다.
이러한높은확장성은논리규모(Logic Size)가 작은 NPU와같은 AI 전용가속기에유리하다. 그러나 GPU와같이
논리규모가큰가속기의경우, 노드당 장착가능한가속기수가제한되기때문에(예를 들어 GB200/300은 노드당
GPU가 두 개로 제한됨), 실제 랙 단위의 배치 규모는 NVLink의 구성과 유사한 수준(약 72개 가속기)이다. 한편
UALink에서는 CPU와 가속기 간 연결이 일반적으로 PCIe 스위치를 통해 이루어지지만, NVLink C2C와 유사한
방식으로 UCIe [415]와 같은단거리 C2C 기술을활용할수도있다.
이와같이구성된가속기클러스터는일반적으로단일클러스터내에서NVLink와UALink를혼합사용하기보다는,
하나의 XLink 기술만을 채택할 가능성이 높다. 이는 NVLink와 UALink 간의 근본적인 기술적 차이와 상호운용성
제약때문이며, 구체적으로두인터커넥트기술이사용하는물리계층(PHY) 및 링크데이터포맷의차이에서비롯된
다. 앞서 언급된 것처럼, NVLink는 NVIDIA 고유의 고속 PHY 인터페이스를 사용하며 비교적 작은 48바이트에서
272바이트크기의플릿을사용하는반면, UALink는 이더넷기반 PHY 인터페이스에크기가큰 640바이트플릿을
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|그림 41| CXL-over-XLink 기반 슈퍼클러스터구성예시.

채택한다. 따라서플릿포맷, 프로토콜운영방식, 물리계층의차이등으로인해NVLink와 UALink 하드웨어를동일
클러스터 내에서 함께 사용하는 것은 실질적으로 어렵다. 무엇보다도, NVLink는 최소한 하나의 NVIDIA 컴포넌트
(예: NVIDIA GPU)를 요구하기때문에완전히서드파티(Third-Party) 가속기만으로구성하는데도심각한제한이
있다.
이에 따라 CXL-over-XLink 슈퍼클러스터 내에서 NVLink와 NVSwitch 기반으로 구성된 가속기 클러스터는
주로NVIDIA GPU로이루어지며, GPU가효과적으로처리하기어려운특수연산을최적화한전용가속기들을함께
사용할 수 있다. 예를 들어 NVIDIA GPU가 배치된 데이터센터는 분기(Branch)가 많은 연산(트리 기반 모델, 조건
로직 등), 불규칙한 제어 흐름을 가지는 작업, 희소하거나 불규칙한 메모리 접근 패턴을 요구하는 워크로드(그래프
처리, 희소 행렬 연산 등), 혹은 실시간 처리와 같이 지연에 민감한 연산에 특화된 가속기를 추가할 수 있다. 이러한
연산들은 고도의 병렬 처리에 최적화된 GPU 아키텍처와는 효율적으로 맞지 않기 때문이다. 이처럼 다양한 특성의
가속기들을 NVLink 기반 클러스터에 통합함으로써 데이터센터는 애플리케이션의 다양한 요구를 수용하면서도
클러스터내부통신성능을최적화할수있다.
반면, UALink 기반클러스터는주로NVIDIA가아닌AMDGPU나메타의MTIA [405, 406], 아마존의트레이니
엄(Trainium [407, 408]) 및 인퍼렌시아(Inferentia [409, 410]), 마이크로소프트의 마이아(Maia [411, 412]),
인텔의 가우디(Gaudi [413, 414]) 등과 같은 AI 전용 가속기들로 구성된다. UALink의 개방적이고 벤더 중립적인
아키텍처는다양한가속기조합을가능하게하며,독점인터페이스에대한의존성없이고성능의클러스터내부통신을
지원한다. 각 인터커넥트의 상호운용성 특성과 아키텍처적 강점에 따라 전략적으로 배치 방식을 결정하면, 이기종
가속기환경에서클러스터내성능, 계산 처리량및자원효율성을최적화할수있다.

CXL을활용한클러스터간확장가능한통신. CXL-over-XLink 기반의슈퍼클러스터는다수의XLink 기반가속기
클러스터를확장가능한CXL 네트워크로통합하여하나의대규모다중가속기시스템으로구성된다. 본기술보고서
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에서제시하는이하이브리드인터커넥트패브릭방식은가속기간낮은지연과효율적인데이터전송을유지하면서
현대 AI 데이터센터의 다양한 워크로드 요구를 효과적으로 수용할 수 있는 환경을 제시한다. 구체적으로, XLink가
가속기클러스터내부의빠른데이터교환을지원한다면, CXL은클러스터간에유연하고확장가능한스위치기반의
네트워크를 형성하여 메모리를 일관되게 공유할 수 있게 해준다. 특히, XLink가 제한적인 단일-홉 클로스 구조를
사용하는 반면, CXL은 계층적이고 확장 가능한 구조를 통해 여러 클러스터가 통합된 메모리 풀을 구성할 수 있도록
지원한다. 이를 통해 외부 메모리나 SSD와 같은 저장 장치의 사용을 최소화하여 성능 이득을 최대화하고 가속기
간 한정된 자원의 유연성과 활용도를 높일 수 있다. 또한, CXL은 UALink와 NVLink 간의 호환성 문제를 해결하는
중재자역할을하며, 다양한이기종가속기클러스터가하나의대규모아키텍처내에서원활히상호작용하도록도울
수있다.
그림 41은 여러 개의 UALink 및 NVLink 기반 클러스터가 계층적 CXL 스위치를 통해 하나의 슈퍼클러스터를
구성할때이스위치들을통해만들어질수있는패브릭아키텍처를보여준다. CXL은 PBR 라우팅과스위치캐스케
이딩을통해서멀티-레벨클로스, 3D-토러스, 드래곤플라이토폴로지와같은다양한연결방식으로여러데이터센터
요구사항을만족시킬수있도록구성가능하다. 또한, CXL은 대규모 AI 데이터센터운영중에도장치나클러스터를
핫플러그방식으로자유롭게추가하거나제거할수있는유연성을제공한다. 따라서워크로드의특성에따라네트워
크를 유연하게 조정하고, 다양한 유형의 가속기나 메모리 장치 그리고 연산 장치들을 스케일업 환경 내에서 하나의
슈퍼클러스터로통합할수있다.
이 CXL-over-XLink 구조의또다른주요장점은클러스터간프로토콜수준의캐시일관성이다. CXL이제공하는
캐시와 관련된 하위 프로토콜(CXL.cache) 메커니즘을 통해 클러스터 내부의 가속기들은 자신 이외 다른 가속기의
메모리와 외부 클러스터에 존재하는 원격 메모리 자원을 소프트웨어 없이 직접 명령어 수준에서 일관되게 접근할
수 있다. 이러한 방식은 가속기가 외부 메모리 없이 다수 가속기의 로컬 메모리 등을 하나로 모으고 모두가 통일된
메모리 주소 공간을 볼 수 있게 해 주며, 데이터는 각 가속기 온칩 캐시에서 바로 끌어올 수 있도록 하여 기존의 노드
간메모리접근방식에서흔히발생하는지연과데이터이동오버헤드는물론, 지역성을가진데이터나공유데이터는
가속기 본인의 캐시에서 바로 서비스할 수 있도록 하여 성능을 최대화할 수 있다. 또한, CXL은 전용 메모리 접근에
관련된하위프로토콜(CXL.mem)과 고속의 데이터 트랜잭션에관련된하위프로토콜(CXL.io) 인터페이스를모두
제공하여, 작은크기의명령어수준데이터전송과큰데이터블록의전송모두에대응할수있고, 장치간직접연결로
CPU의개입이전혀없이도데이터를관리할수있도록프로토콜을수정할수도있다. 결과적으로, 그림 42에서처럼,
하이브리드 인터커넥트 구조를 사용하여 가속기 간 데이터 이동을 최소화할 수 있으며, 분산된 자원을 통한 연산
가속화를지원하여메모리집약적인워크로드에서도높은성능을유지할수있도록도와줄수있다.
마지막으로, CXL-over-XLink는 슈퍼클러스터 내에서 기존 집합 연산 등에 의한 데이터 이동 방식의 효율성을
한층더향상시킬수있다. 특히, 기존시스템에서데이터복사나명시적동기화작업으로인해많은오버헤드를유발
하는 브로드캐스트(Broadcast), 스캐터/개더(Scatter/Gather), All-Reduce와 같은 집합적 연산의 처리 방식을
근본적으로개선할수있다. 이는기존의명시적동기화와중복데이터복사로인해발생하던오버헤드를원천적으로
없앨수있기때문이다. 분산된 가속기들이 CXL을 통해 캐시일관성을보장하는메모리에접근을수행하면, 데이터
이동이 하드웨어 수준에서 자동으로 관리되어 분산된 자원을 통합된 메모리 풀로 사용할 수 있다. 이러한 접근법은
성능을높일뿐아니라AI 모델개발과관리를단순화하는장점도제공한다. 예를들어, 개발자는가속기커널(Kernel)
을 프로그래밍할 때 복잡한 동기화 및 데이터 이동 코드를 명시적으로 관리할 필요 없이, 오직 연산 작업 자체에만
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(a)프로토콜수준의캐시일관성. (b)명령어수준의데이터전송.

|그림 42| CXL-over-XLink에서의캐시일관성과데이터이동관리.

집중할수있다. 병렬 연산에최적화된소프트웨어커널이연산을수행하는동안, 클러스터간의고속메모리데이터
전송은 CXL의 프로토콜수준캐시일관성정책이하드웨어적으로어떤개입도필요없이완벽히처리해준다. 특히
다양한 워크로드 실행에 있어서 접근 지역성을 보이는 데이터 접근은 가속기 내부의 캐시를 효과적으로 활용하여
성능과연산효율성을극대화할수있다.

XLink와 CXL 통합아키텍처를위한하드웨어및소프트웨어최적화. 슈퍼클러스터 아키텍처에서 XLink와 CXL
을 명확히 구분하여 사용하는 것은 설계상의 큰 이점을 제공한다. 그러나 서로 다른 두 기술을 실제로 통합할 때는
여러 구현상의 어려움이 존재할 수 있다. 특히, XLink 기반 클러스터 내부와 CXL 기반 클러스터 간 패브릭 도메인
사이에서 데이터 포맷과 프로토콜 변환 과정이 필요하게 되며, 이는 추가적인 지연을 유발할 수 있다. 이러한 오버
헤드는 전반적인 성능 저하로 이어질 수 있으며, 특히 지연에 민감한 워크로드에 부정적인 영향을 줄 수 있다. 또한
클러스터 내부에 가속기 밀도가 높아지면서 냉각 요구가 증가하고, 일관성 메모리 트랜잭션 처리 시 인터커넥트의
신뢰성과오류관리에대한문제도추가로발생할수있다.
이러한 문제를해결하기위해서는맞춤형하드웨어최적화가필요할수있다. 그림 43a에서 보는바와같이, 특수
설계된 SoC 기반 브리지 인터페이스를 통해 프로토콜 간 데이터 포맷 변환을 신속하게 처리하도록 최적화하고,
간소화된프로토콜을사용하여인터페이스간핸드쉐이크오버헤드를최소화할수있도록간소화하여구현할수있다.
특히, 브리지 인터페이스 내부에 고대역폭 메모리(HBM)를 통합하여, 프로토콜 변환 과정에서의 성능 저하를 더욱
완화할수있다. 예를들어, 자주접근되는메모리주소나요청결과를미리 HBM에저장하여동일한데이터요청시
다시변환하는과정없이즉시사용할수있도록하면, 앞서언급된지연을크게줄일수있다. 또한 CXL-over-XLink
기반 슈퍼클러스터 내부에 데이터 배치 전략을 지능적으로 설계하여 불필요한 데이터 이동을 최소화하면 전체 시스
템의성능을더욱향상시킬수있다.
이러한 하드웨어적 최적화 설계 방법 이외에도, 고급 오케스트레이션이나 소프트웨어 전략 등을 활용하여 성능을
개선시키는 것도 하나의 중요 포인트이다. 그림 43b에서처럼, 오케스트레이션 소프트웨어 프레임워크 등을 통해
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(a) HBM이통합된특수브리지인터페이스. (b)오케스트레이션소프트웨어.

|그림 43| XLink와 CXL 통합 아키텍처를위한하드웨어및소프트웨어최적화.

실시간 워크로드 모니터링과 예측 기반의 자원 관리, 적응형 자원 할당이 가능하며, 이는 CXL-over-XLink 기반의
슈퍼클러스터와 같은 대규모 통합 아키텍처의 운영 효율성 및 성능을 크게 높일 수 있다. 예를 들어, 특정 클러스터
에서 외부로 접근하는 메모리 요청이 빈번히 관측되면, 소프트웨어는 데이터를 요청하는 클러스터로 해당 데이터를
물리적으로 이동시킴으로써 클러스터 내 가속기 간에 데이터 접근 및 처리가 일어나도록 최적화할 수 있다. 또한
데이터 중복성, 복제, 체크포인트(Checkpoint) 등의 강력한 내고장성 메커니즘을 소프트웨어를 통해 도입하면
이러한대규모다중가속기시스템의안정성과신뢰성을더욱높일수있다. 이를 통해구성요소의고장이나예기치
않은 데이터 손상, 인터커넥트 장애 등의 위험을 효과적으로 관리할 수 있으며, 결과적으로 지속적이고 안정적인
운영과일관된시스템성능을유지할수있을것이다.

6.3. XLink와경량화된CXL 링크를활용한계층적메모리구성
현대 AI 워크로드의 다양한 메모리 성능 요구를 효과적으로 충족하기 위해, 본 서브섹션에서는 CXL-over-XLink
기반슈퍼클러스터에계층적메모리구성을추가할수있도록한단계발전시킨확장형구조를제안한다. 이구조에서
메모리구성은크게두가지메모리계층으로나뉜다. 첫번째는 XLink와 일관성중심의CXL(Coherence-Centric
CXL)로 관리되는 고성능 로컬 메모리이며, 두 번째는 용량 중심의 CXL(Capacity-Oriented CXL)을 통한 확장
가능한메모리풀이다. 이두가지다른메모리계층을만들기위해서CXL을경량화된형태로구현하는것을제시하며,
본 절마지막에는메모리계층을가지고있는슈퍼클러스터를전략적으로활용하기위한데이터배치및관리기법을
함께제안하며마무리한다.

고성능가속기로컬메모리: 일관성을지원하는 XLink. 기존 CXL-over-XLink의 슈퍼클러스터구조내에서개별
가속기클러스터는XLink로연결되며, 각각의가속기는HBM또는고대역폭특화DDR메모리와같은커스텀메모리
기술을사용한다. 이러한가속기구조들은각각이미정해진상태로클러스터를구조화하기때문에버전이나용량이
다른 HBM들이 하나의 슈퍼클러스터 내에 있을 수 있으며, 또한 다른 유형의 이종 간 고속 메모리 등도 클러스터 내
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혼재할수있다. 인프라의스케일이대규모가됨에따라, 실제 인프라내에서실행되는워크로드와모델에따라서각
클러스터간필요한메모리용량과종류그리고접근패턴등이모두다를수있다. 슈퍼클러스터는CXL-over-XLink
에서클러스터간을연결해주는CXL 패브릭이이미포함되어있으므로이를잘활용하면클러스터간에흩어져있는
고성능메모리를논리적으로통합하여일관된가속기로컬메모리계층을형성할수있다.
우선 클러스터 내부의 로컬 메모리는 XLink를 사용하여 통합된 메모리 주소 공간을 만들어낼 수 있다. 다양한
방법으로 주소 공간을 생성할 수도 있겠지만 XLink의 프로토콜 명세와 동작 방식을 생각해 볼 때 가장 기본적인
방식은 각 가속기의 메모리 모듈마다 정적으로 파티션된 블럭으로 인식하여 이를 연속적인 주소 공간으로 할당해
통합된 메모리 주소 공간을 만드는 것이다. 예를 들어 UALink는 각 가속기의 메모리를 정적으로 나누어 NUMA
형태의 통합된 메모리 도메인을 만들 수 있으며, NVLink는 가상화를 통해 장치 간 통합된 주소 공간을 구성한다.
그러나 이런 방식으로 통합된 메모리는 각각 정적 메모리 영역을 넘어가는 공간에 대한 공유가 일어날 수가 없어서
소프트웨어나 펌웨어가 개입하여 데이터를 복사해 줘야 하며 프로토콜 상의 캐시 일관성이 없으므로 데이터 자체도
공유할 수 없다. 따라서 가속기가 로컬로 소유하지 않은 메모리 영역에 접근할 때는 XLink를 통한 데이터 전송이
필요하며, 이는 추가적인 지연을 유발한다. 특히 서로 다른 클러스터 사이의 메모리 접근이 발생하면 이러한 문제는
더욱두드러져성능저하로이어진다.
이러한 성능 저하 및 지연 문제를 해결하기 위해 일관성 중심의 CXL을 활용할 수 있다. CXL을 수정하지 않고
CXL-over-XLink의 클러스터 간 CXL 연결만을 그대로 사용한다는 가정 하에, 각 클러스터는 메모리 주소 공간 중
일부를지정하고해당주소공간에대해서만클러스터간CXL패브릭에서캐시일관성을유지해주는방식으로특정한
응용과데이터에대해서공유하거나일관성을확보해줄수있다. 다시말해, 가속기로컬메모리계층의일부영역에
대해 캐시 일관성을 유지하면서 데이터 공유를 가능하게 하고, 나머지 영역에서는 XLink를 통한 데이터 복사 및
이동을통해서통합된주소공간을관리하게하는것이다. 이러한 클러스터 간 CXL 패브릭을 이용한 부분적일관성
허용방법은각각의 AI 워크로드들실행에있어서클러스터내데이터지역성을높이고성능을개선할수있다. 또한
데이터 접근이 클러스터 내에서 일어나게 되고 지역성이 높아지면, 빈번하게 접근되는 데이터에 대해서는 애초에
가속기온칩캐시에서자동으로관리되어데이터이동등을원천적으로해결할수있다.
좀더진보적인방법으로는데이터공유와캐시일관성요구가높은워크로드에서는CXL을일관성에초점을맞추고
경량화하여 클러스터 내부에서도 적극적으로 활용할 수 있도록 구성할 수 있다. 이 경우, 각 가속기에 전용의 CXL
컨트롤러로직을추가하여, XLink 컨트롤러와가깝게배치하거나컨트롤러내부에직접통합하여설계하고구현할수
있다. 이러한구성에서가장큰이점은일관성중심의경량화된CXL이 XLink와함께클러스터내에도존재하게되는
것으로 모든 GPU나 가속기가 하나의 메모리 공간을 보고 데이터를 모두 공유하는 구조를 만들어낼 수 있다. 집합
연산이나명시적데이터이동이완전히사라지게만들수있으므로상당한성능이득을볼수있다. 또한, 비록이러한
구조는 SoC 구현복잡성, 비용, 중복된데이터전송등의문제를야기할가능성이있지만, CXL 프로토콜의불필요한
기능들을제거하고캐시일관성에초점을맞추는최적화를통해효과적으로완화할수있다. 이러한 XLink와 CXL의
통합 컨트롤러는 여러 가지 방법으로 다양하게 구현될 수 있지만, 기본적으로 중복 기능들을 제거하기 위해 대용량
데이터이동은 XLink를 통해처리하고, 가속기의컨트롤러는최적화된 CXL.cache 하위프로토콜만구현하여오직
일관성 트래픽만 관리하고 처리하는 방식을 채택할 수 있다. 이 접근법은 세부 컨트롤러 설계와 프로토콜 관리를
요구하지만, 결과적으로캐시일관성향상, 데이터관리간소화, 그리고슈퍼클러스터전체의계산효율성향상과같은
성능적이점을제공한다.
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|그림 44| CXL 메모리풀로구성된계층적메모리구조.

이와같이 XLink 기반의로컬메모리와일관성중심CXL을결합하면가속기노드수준의낮은지연과캐시일관성
요구를 효과적으로 만족시킬 수 있다. 그러나 현대 AI 워크로드는 종종 랙 수준의 가속기 로컬 메모리 용량 총합을
초과하는대규모메모리공간을요구하기때문에, 별도의확장가능한용량중심메모리풀이추가로필요하다. 이를
위해서는다음에제안할컴포저블메모리풀을사용하는보완전략이필요하다.

용량중심의컴포저블메모리풀: CXL. 가속기로컬메모리는성능이중요한데이터를빠르게처리하는데효과적이
다. 그러나많은AI 워크로드는성능을일부희생하더라도훨씬더큰용량의메모리를필요로한다. 예를들어대규모
임베딩테이블이나캐시, 외부지식데이터베이스와같은경우가이에해당한다. 이를해결하기위해, 본보고서에서는
슈퍼클러스터아키텍처내부에별도의컴포저블메모리풀을구성하여용량을유연하게확장할수있는 2계층구조를
제안한다.
이 2계층의 컴포저블 메모리 풀은 주로 앞서 설명한 메모리 트레이로 구성되며, 그림 44에서 보이듯이 가속기
클러스터와 분리된 상태에서 CXL 패브릭을 통해 연결된다. CXL-over-XLink 기반의 슈퍼컴퓨터에서 컴포저블
메모리 풀의 특성은 이미 일관성 중심의 CXL과 XLink의 관리로 가속기 간 통합된 메모리 뷰를 1계층 메모리로
가지고 있다는 것이다. 따라서 2계층 메모리까지 데이터 접근이 생기는 경우는 최소한 랙 수준의 가속기 메모리
총량을넘어가는수준으로과거 RAG와 같은응용에서데이터를스토리지또는분산파일시스템으로부터가져오는
경우에가까울것이다. 이러한경우는수밀리초에서수십초까지가속기로데이터가올라오는시간이생길수있는데
2계층의 컴포저블 메모리 풀은 패브릭의 스위치에 따라 다르지만, 여전히 수십에서 수백 나노초 미만으로 상당한
이득을얻을수있다. 물론여기서가장큰역할은메모리용량이며, 컴포저블메모리풀의최대용량효율을달성하기
위해, 메모리풀을구성하는메모리트레이각각에는CPU나가속기와같은연산장치를배치하지않고순수한메모리
자원만을집약한다.
메모리 트레이의 물리적 배치는 스위치 한 홉의 수와 지연과 관계가 있는 것으로, CXL 패브릭이 닿을 수 있는
곳이면 CXL-over-XLink 기반 슈퍼클러스터내어디든관계가없다. 또한데이터센터디자이너의공간관리에대한
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요구사항에맞춰다양한방식으로메모리트레이를구성하되 2계층의메모리풀에대한주소공간을패브릭이알수
있게 하여 배치하거나 가상적 관리 기법을 통해 논리적으로 연결할 수 있다. 물론 메모리 트레이를 가속기 클러스터
가까이에 배치하면, 성능이 떨어지는 스케일아웃 데이터 접근 방식에 대한 의존을 크게 줄일 수 있다. 실제 운영
환경에서 이와 같은 외부 메모리 자원은 계층적 메모리 아키텍처의 2계층을 형성하며, 용량 확장에 특화된 역할을
수행한다.
일관성 중심의 CXL 접근 방법에서도 그랬지만, 현재 용량 중심의 CXL 또한 기존 CXL-over-XLink 패브릭을
그대로 쓸 수도 있고 이를 개선할 수하여 대규모 워크로드에 더욱 최적화 할 수도 있다. 다시 말해 이미 1계층 로컬
메모리가 캐시 일관성을 유지하며 지연에 민감한 데이터를 처리하므로, 2계층 메모리 풀은 오로지 메모리 용량에
초점을맞추고다른기능은단순화하고좀더비용효율적으로만들수있다. 예를들어, 모든메모리트레이사이에서
캐시 일관성을 유지할 필요는 없다. 따라서 컨트롤러의 설계를 가볍게 하고 효율성을 최대화하기 위해 CXL.cache
또는 CXL.io 프로토콜을스위치나엔드포인트에서비활성화하도록설계하고구성할수있다. 특히, 1계층 메모리가
배타적캐시로서충분한경우, 2계층컴포저블메모리풀은 CXL.mem을생략하고대량데이터전송을위한 CXL.io
만으로 구성할 수도 있다. 다만 어떤 방식을 선택하든 가속기 로컬 메모리와 컴포저블 메모리 풀 사이에는 지속적인
데이터전송이발생하므로, 충분한수의CXL 패브릭포트를제공하여데이터이동성능을최적화하는것이중요하다.
프로토콜의단순화외에도, 2계층용량중심메모리풀을위한추가최적화가가능하다. 5.2절에서논의한것처럼,
메모리 트레이는 고속 DRAM 대신 저속 DRAM 인터페이스(예를 들어 LPDDR이나 DDR3)를 활용하여 비용을
절감할 수 있다. 또는, 대용량 플래시 메모리와 소량의 고속 HBM을 결합한 하이브리드 메모리 트레이를 구성하면,
전체용량을극대화하면서도 1계층가속기로컬메모리와의데이터전송에필요한성능을제공할수있다. 또한, 여러
층이나 건물을 가로지르는 긴 물리적 거리에서도 안정적인 데이터 전송과 버퍼링을 지원하기 위해, 슈퍼클러스터의
계층적메모리구조에서는PCIe PHY대신실리콘포토닉스(Silicon Photonics)와같은광학기술을적용하여CXL
연결 성능을더욱높일수있다.

계층적 데이터 배치 및 관리 전략. 앞서 이야기된 것처럼 가속기 로컬 메모리(XLink 기반)와 컴포저블 메모리 풀
(CXL 기반)을 결합하면, 성능과 메모리 용량을 모두 크게 확장할 수 있는 새로운 기회를 제공할 수 있다. 하지만
이러한계층적메모리구조를최대한활용하기위해서는데이터를효율적으로배치하고, 자원을지능적으로관리하는
소프트웨어프레임워크의도움이필요할수도있다. 특히, 가속기클러스터간계산작업의동적배분과 CXL 메모리
풀의효율적할당을동시에지원하는통합관리방식은 AI 데이터센터의자원활용도를높이고, 성능과운영효율성을
균형있게유지하는데큰도움이될수있다.
다시 말해 계층적 메모리 아키텍처의 효과를 극대화하려면 각 계층의 성능 특성을 고려한 데이터 배치 전략이
중요한데, 이런 부분은하드웨어가직접들어가서전략을수행하는것보다는소프트웨어가진행하는것이유리하다.
구체적으로데이터배치결정시에는데이터의접근빈도와지연민감도를명확하게평가해야하는데, 이런부가적인
부분은그기능자체가하드웨어로구성될필요가없으므로소프트웨어로구성하고전략을정교하게만드는것이좋을
것이다. 예를 들어, 활성화 상태, 임베딩 벡터, 어텐션 캐시등빈번히접근되고빠른응답이필요한데이터는가속기
로컬 메모리에 저장해야 하는 반면, 용량이 크고 지연에 상대적으로 덜 민감한 데이터는 용량 중심의 CXL 컴포저블
메모리풀에배치하는것이적합하다. 이러한계층적접근법을구현하기위해, 다양한런타임정보들을모니터링하고
각데이터의특성에최적화된형태로배치하여자원활용을최대화하고성능을높일수있다.
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좀 더 나아가, 정교한 데이터 배치 전략의 효율적인 운영을 위해서는 소프트웨어 기반의 고급 오케스트레이션
프레임워크를 추가하여 관리할 수도 있다. 예를 들어, 워크로드 패턴과 데이터 접근 빈도의 변화를 예측하여 데이터
위치를 동적으로 조정하는 예측 기반 데이터 마이그레이션 알고리즘을 도입할 수 있다. 또한, 접근 빈도에 따라
우선순위를 부여하는 온도 인지 캐싱 정책과 기계학습 기반의 지능적 프리페칭을 통해 데이터 이동의 오버헤드와
지연을 최소화할 수 있다. 그러나 데이터 마이그레이션이 지나치게 빈번해지면 성능 저하가 발생할 수 있으므로,
하드웨어 최적화, XLink와 CXL 간 프로토콜 변환 인터페이스의 효율적 설계, 신중한 데이터 이동 정책 등 포괄적
접근이필요하다.
전체적으로 다시 한번 정리해 보면, CXL과 XLink 등을 통해 구성되는 대규모 다중 가속기 시스템에서 대규모 AI
응용 프로그램은 계층적 데이터 관리 접근법에서 큰 혜택을 얻을 수 있다. 예컨대, 실시간 추론 작업은 가속기 로컬
메모리를활용해빠른데이터처리를수행할수있으며, 임베딩조회나외부데이터검색과같은대규모작업은 CXL
컴포저블메모리풀을통해효율적으로처리할수있다. 따라서각메모리계층의역할을명확히구분하고전략적으로
데이터를배치하면, 현대 AI 데이터센터의다양한요구사항을효과적으로만족할수있는성능과자원활용최적화를
실현할수있다.
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7. 결론

본기술보고서에서는현대AI 워크로드를확장하는데있어GPU중심아키텍처의한계를분석하였다. 특히메모리
용량, 장치간통신, 자원관리와관련된문제점들이주요한성능병목으로지적되었다. 이를극복하기위해메모리와
연산자원을동적으로분리및할당할수있는 CXL 기반의모듈형데이터센터아키텍처를제안하였다.
이러한 아키텍처의 실증적 평가를 위해 RAG, Graph-RAG, DLRM, MPI 기반의 다양한 AI 워크로드를 활용하였
으며, 기존 RDMA 기반 시스템 대비 지연, 통신 오버헤드, 메모리 관리 복잡성이 현저히 개선됨을 확인하였다. 이
결과를통해, CXL의캐시일관성메모리공유와자원컴포저빌리티기능이자원효율성을극대화하고운영유연성을
높이는데효과적임을입증하였다.
추가적으로 UALink와 NVLink 같은 전용가속기중심인터커넥트기술을 CXL과 결합한하이브리드아키텍처를
분석하였다. 이 결합을 통해 가속기 간의 효율적인 통신을 유지하면서도 메모리 확장성과 데이터 공유의 유연성을
확보할수있었다.
마지막으로, 실제 데이터센터에서컴포저블 CXL 인프라를구축할때의주요아키텍처적고려사항을제시하였다.
구체적으로, 전용 메모리 풀링, 적응형 데이터 배치, 가속기 중심 자원 관리, 고급 중앙집중식 모니터링의 중요성을
논의하였다. 향후연구는실질적인배포환경의문제를해결하고, 고급오케스트레이션기법을개발하며, 하이브리드
인터커넥트 전략을 더욱 세밀히 최적화하는 데 집중되어야 한다. 이러한 지속적 노력을 통해 점점 더 높은 성능을
요구하는현대 AI 워크로드에대한컴포저블 CXL 인프라의잠재력을완전히실현할수있을것이다.
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• Panmnesia, the Panmnesia logo, and other Panmnesia marks are trademarks of
Panmnesia, Inc. or its subsidiaries. Other names and brands may be claimed as the
property of others.

• All content contained in this document is protected by applicable copyright laws.
Any unauthorized use, reproduction, distribution, or transmission of the content is
strictly prohibited without prior written consent of Panmnesia.

• All information included herein is provided ”AS IS.” Panmnesia hereby disclaims all
warranties, representations, and guarantees of any kind with respect to the
information in this document, including without limitation, warranties of
merchantability, non-infringement, accuracy, completeness, timeliness, or fitness for
any particular purpose.

• Panmnesia reserves the right to make corrections, modifications, enhancements,
improvements, and any other changes to this document, at any time without notice.

• Neither Panmnesia nor any of its affiliates, officers, employees, or representatives
shall bear any responsibility or liability whatsoever for any errors, omissions, or
consequences arising from the use of or reliance upon any information included
herein. Any recipient should conduct their own due diligence before making any
decisions based on this information.

• Except for the sections on XLink, this technical report is based entirely on the
keynote presentation delivered by Panmnesia at the 2024 Summer Conference of
The Institute of Semiconductor Engineers in August.
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